

https://twinkle.repo.nii.ac.jp

A novel alveolar epithelial cell sheet fabricated under feeder-free conditions for potential use in pulmonary regenerative therapy

メタデータ	言語: jpn
	出版者:
	公開日: 2022-07-07
	キーワード (Ja):
	キーワード (En):
	作成者: 光星, 翔太
	メールアドレス:
	所属:
URL	https://doi.org/10.20780/00033283

1 Title page

2 Title

3 A novel alveolar epithelial cell sheet fabricated under feeder-free conditions for

4 potential use in pulmonary regenerative therapy

5

6 Authors and affiliations

- 7 Shota Mitsuboshi^a, Jun Homma^b, Hidekazu Sekine^b, Ryo Takagi^b, Tatsuya Shimizu^b,
- 8 and Masato Kanzaki^{a,b}
- 9 ^a Department of Thoracic Surgery, Tokyo Women's Medical University, 8-1
- 10 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan
- ^b Institute of Advanced Biomedical Engineering and Science, Tokyo Women's
- 12 Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan

13

14 **Corresponding author**

- 15 Hidekazu Sekine
- 16 Address: Institute of Advanced Biomedical Engineering and Science, Tokyo Women's
- 17 Medical University, 8-1 Kawada-cho, Shinjuku-ku, Tokyo 162-8666, Japan

- 18 Tel.: +81 3 3353 8111; Fax: +81 3 5269 7616
- 19 E-mail address: sekine.hidekazu@twmu.ac.jp

20 Abstract

21 Introduction

Lung transplantation is the only effective treatment option for many patients with 22 irreversible pulmonary injury, and the demand for lung transplantation is increasing 23 worldwide and expected to continue to outstrip the number of available donors. 24 Regenerative therapy with alveolar epithelial cells (AECs) holds promise as an 25 alternative option to organ transplantation. AECs are usually co-cultured with 26 mouse-derived 3T3 feeder cells, but the use of xenogeneic tissues for regenerative 27 therapy raises safety concerns. Fabrication of AEC sheets under feeder-free 28 conditions would avoid these safety issues. We describe a novel feeder-free method 29 of fabricating AEC sheets that may be suitable for pulmonary regenerative therapy. 30 Methods 31 Lung tissues excised from male outbred rats or transgenic rats expressing green 32 fluorescent protein (GFP) were finely minced and dissociated with elastase. The 33 isolated AECs were cultured under four different feeder-free conditions according to 34 whether a rho kinase (ROCK) inhibitor was included in the low-calcium medium 35 (LCM) and whether the tissue culture dish was coated with recombinant laminin-511 36

	37	E8 fragment	(rLN511E8)). The ex	panded	cells were	cultured	on
--	----	-------------	------------	-----------	--------	------------	----------	----

38 temperature-responsive dishes and subsequently harvested as AEC sheets.

39 Engraftment of GFP-AEC sheets after their transplantation onto a partially resected

40 region of the left lung was assessed in athymic rats.

41 **Results**

42	AECs proliferated and reached confluence when cultured in LCM containing a
43	ROCK inhibitor on tissue culture dishes coated with rLN511E8. When both the ROCK
44	inhibitor and rLN511E8-coated culture dish were used, the number of AECs obtained
45	after 7 days of culture was significantly higher than that in the other three groups.
46	Immunohistochemical analyses revealed that aquaporin-5, surfactant protein (SP)-A,
47	SP-C, SP-D and Axin-2 were expressed by the cultured AECs. AEC sheets were
48	harvested successfully from temperature-responsive culture dishes (by lowering the
49	temperature) when the expanded AECs were cultured for 7 days in LCM + ROCK
50	inhibitor and then for 3 days in LCM + ROCK inhibitor supplemented with 200 mg/L
51	calcium chloride. The AEC sheets were firmly engrafted 7 days after transplantation
52	onto the lung defect and expressed AEC marker proteins.

53 Conclusions

- AEC sheets fabricated under feeder-free conditions retained the features of AECs after transplantation onto the lung *in vivo*. Further improvement of this technique may allow the bioengineering of alveolar-like tissue for use in pulmonary regenerative therapy.
- 59 Keywords
- alveolar epithelial cell, feeder-free, cell sheet, regenerative therapy

61 Abbreviations

- AEC, alveolar epithelial cell; AECI, type I alveolar epithelial cell; AECII, type II
- alveolar epithelial cell; AEpiCM, alveolar epithelial cell medium; AQP-5, aquaporin-5;
- 64 Ca²⁺, ionized calcium; FBS, fetal bovine serum; GFP, green fluorescent protein;
- HBSS, Hanks' balanced salt solution; HE, hematoxylin and eosin; LCM, medium with
- a low ionized calcium concentration; PBS, phosphate-buffered saline; rLN511E8,
- recombinantly expressed laminin-511 E8 fragment; ROCK, rho kinase; SP, surfactant
- 68 protein.

69 Main Text

70 1 Introduction

Lung transplantation is the only effective treatment option for many patients with

- irreversible pulmonary injury, and the demand for lung transplantation is increasing
- 73 worldwide and expected to continue to outstrip the number of available donors [1].
- 74 Regenerative therapy holds great promise as a future alternative option to organ
- transplantation and would circumvent the limitations of conventional transplantation
- 76 techniques such as the lack of donor organs, adverse effects due to
- immunosuppression and organ rejection [2].
- 78 Regenerative therapy for lung injury requires the transplantation of bioengineered
- 79 tissue constructed from appropriate cell types. Gas exchange occurs in pulmonary
- alveoli, which comprise 90% of the total volume of the lungs [3]. The alveolar
- 81 epithelium is lined with type I alveolar epithelial cells (AECIs), which are specialized
- 82 for gas exchange, and type II alveolar epithelial cells (AECIIs), which produce
- 83 surfactant proteins (SPs) involved in innate immune responses [4]. Although alveolar
- 84 epithelial cell (AEC) cultures have been established previously, one of their limitations
- 85 was the unwanted trans-differentiation of AECIIs to AECIs in vitro [5]. The

86	differentiation of AECIIs to AECIs in vivo normally only occurs following injury to the
87	lung and aims to replenish the damaged alveolar epithelium. Initially, AECIIs
88	proliferate to replace the lost cells, although the underlying mechanisms remain only
89	partially understood [6]. Once normal cell numbers are restored, some AECIIs
90	trans-differentiate into AECIs to re-establish the normal alveolar architecture [7].
91	Recent reports have suggested that Wnt signaling regulates the stemness of AECIIs
92	[8-10].
93	Approaches to improve the culture of cells in vitro include the use of feeder cells,
94	which secrete various proliferation-promoting factors, and pharmacological agents
95	such as rho kinase (ROCK) inhibitors [11,12]. Although human AECIIs proliferate
96	rapidly when cultured in the presence of mouse-derived 3T3 feeder cells and a ROCK
97	inhibitor, markers of AECIIs become downregulated after the first passage [4].
98	Furthermore, AECs are difficult to maintain in long-term culture [4]. Importantly,
99	human epithelial cell grafts co-cultured with mouse-derived 3T3 feeder cells are
100	classified by the US Food and Drug Administration as xenogeneic products, which
101	complicates their potential use as a cell therapy or regenerative therapy in the clinical
102	setting. Hence, the establishment of a feeder-free culture system for AECs would

facilitate the development of new regenerative therapies for patients with respiratory
failure due to irreversible lung injury.

105	Research is ongoing to optimize the conditions for feeder-free culture of AECs and
106	other cell types. Laminin is a high-molecular-weight protein found in the extracellular
107	matrix, and recombinant laminin-511 isoform, which is a heterotrimer consisting of α 5,
108	$\beta 1,$ and $\gamma 1$ chains, has been shown to improve the long-term culture of human
109	pluripotent stem cells in the absence of feeder cells [13]. Furthermore, recombinant
110	laminin-511 E8 fragment (rLN511E8) also has been reported to support the stable,
111	feeder-free culture of human embryonic stem cells, human induced pluripotent stem
112	cells and ocular epithelial cells [14]. In addition, ionized calcium (Ca ²⁺) is recognized
113	as a differentiation-inducing factor for epithelial cells. For example, the use of culture
114	medium containing a low concentration of Ca ²⁺ (low-Ca ²⁺ medium, LCM) has been
115	demonstrated to enhance the proliferation of human epidermal keratinocytes when
116	cultured in the absence of 3T3 feeder cells [15].
117	We hypothesized that it would be possible to culture AECs under feeder-free
118	conditions if a suitable combination of pharmacological agents was used. Therefore,

the main objectives of this study were to develop a new method of culturing AECs

120	under feeder-free conditions, optimize the fabrication of AEC sheets, and evaluate
121	whether AEC sheets would engraft onto host tissue after transplantation in vivo. We
122	show that AECs can be cultured under feeder-free conditions using LCM containing a
123	ROCK inhibitor and rLN511E8-coated culture dishes. Furthermore, in vivo
124	experiments in athymic rats confirmed that AEC sheets engrafted successfully after
125	transplantation onto a lung defect.
126	
127	2 Methods
128	All animal experiments were performed in accordance with the Guidelines of Tokyo
129	Women's Medical University on Animal Use and consistent with the Guide for the
130	Care and Use of Laboratory Animals prepared by the Institute of Laboratory Animal
131	Resources (ILAR). The experimental procedures (isolation and culture of rat AECs
132	followed by fabrication and transplantation of rat AEC sheets) are summarized in Fig
133	1.
134	2.1 Isolation of rat AECs
135	AECs were isolated from 4-8 week-old male outbred rats (SIc:SD; Japan SLC Inc.,
136	Shizuoka, Japan) or transgenic rats (SD-Tg[CAG-EGFP]; Japan SLC Inc.) expressing

137	green fluorescent protein (GFP) and weighing 100-150 g. The chest wall was incised
138	along the entire length of the sternum and anterior portion of the diaphragm under
139	inhalation anesthesia with isoflurane. The right ventricle and left atrium were
140	cannulated with 20-gauge plastic catheters, and the lungs were perfused with
141	phosphate-buffered saline (PBS; Fujifilm Wako Pure Chemical Corporation, Osaka,
142	Japan) until white in color to ensure that they had been cleared of blood. Lung tissues
143	were carefully excised from the chest cavity and finely minced. Dissociated cells were
144	obtained by gently shaking the lung tissue in Hanks' balanced salt solution (HBSS;
145	Fujifilm Wako Pure Chemical Corporation) containing 1 mg/mL elastase (Worthington
146	Biochemical Corporation, Lakewood, NJ, USA) at 37°C for 60 min. After quenching
147	the enzymatic activity with fetal bovine serum (FBS; Thermo Fisher Scientific,
148	Waltham, MA, USA), the digested tissue was filtered through 100- μm and 40- μm cell
149	strainers (Corning Inc., Corning, NY, USA) to collect a cell suspension. After
150	centrifugation at $400 \times g$ for 10 min at room temperature, the cell pellet was
151	resuspended in HBSS and layered on a Percoll gradient (1.083 g/mL; Sigma-Aldrich,
152	St. Louis, MO, USA). After centrifugation at 400× <i>g</i> for 30 min at room temperature,
153	the layer of AECs generated on the Percoll gradient was collected.

2.2 Culture of rat AECs 154

155	The isolated AECs were suspended in LCM comprising Alveolar Epithelial Cell
156	Medium (AEpiCM; ScienCell, Carlsbad, CA, USA) supplemented with 2% FBS.
157	Primary AECs were cultured under four different feeder-free conditions (see Fig. 2A)
158	according to whether 10 μM Y-27632 (a ROCK inhibitor; Fujifilm Wako Pure Chemical
159	Corporation) was included in the LCM and whether the tissue culture dish was coated
160	with rLN511E8 (iMatrix-511; Matrixome, Osaka, Japan). AECs were seeded at a
161	density of 2.0×10^4 cells/cm ² onto tissue culture dishes (35 mm in diameter) and
162	cultured for 7–10 days at 37°C in a humidified atmosphere containing 5% CO_2 .
163	Primary cultured cells were subsequently harvested by treatment with 0.05%
164	trypsin-ethylenediamine tetraacetic acid for 5 min at 37°C. The expanded cells were
165	seeded at a density of 5.0×10^4 cells/cm ² onto temperature-responsive culture dishes
166	(35 mm in diameter; UpCell, CellSeed Inc., Tokyo, Japan) and cultured for 7–10 days
167	at 37°C.

168 2.3 Fabrication and transplantation of rat AEC sheets

AECs were cultured on temperature-responsive culture dishes until confluency. In 169 some experiments, the cells were further cultured in medium supplemented with 200 170

171	mg/L calcium chloride (to increase the Ca ²⁺ concentration) for 3 days. A support
172	membrane (Cell Shifter; Cell Seed Inc.) was placed into the culture dish, and the
173	culture medium was aspirated. Following incubation at 20°C for 30 min, the
174	membrane was slowly peeled from the periphery of the dish to harvest the AECs as
175	an intact sheet.
176	The rat GFP-AEC sheets were transplanted onto the lungs of male athymic rats
177	(F344/NJcl-rnu/rnu; CLEA Japan Inc., Tokyo, Japan) under isoflurane inhalation
178	anesthesia and mechanical ventilation. The rat was placed in the right lateral
179	decubitus position, and a left lateral thoracotomy was performed. A 5mm lung incision
180	with 3mm depth was made in the left lung using scissors, and three GFP-AEC sheets
181	were transplanted onto the incised region of the left lung. After the GFP-AEC sheets
182	were transplanted, no air leakage from lung was confirmed and the wound closed
183	without chest tube drainage. Seven days later, the rat was euthanized by
184	exsanguination under isoflurane anesthesia, and the left lung including the
185	transplanted cell sheets was resected for histological analyses.
186	2.4 Histology and immunohistochemistry

187 For immunohistochemistry, cultured AECs were fixed in 4% paraformaldehyde and

188	blocked with 5% FBS in PBS for 60 min. Then, the cells were incubated with
189	anti-SP-A rabbit polyclonal antibody (1:300 dilution; bs-10265R; Bioss, Woburn, MA,
190	USA), anti-SP-C rabbit polyclonal antibody (1:300 dilution; bs-10067R; Bioss),
191	anti-SP-D rabbit polyclonal antibody (1:300 dilution; bs-1583R; Bioss),
192	anti-aquaporin-5 (AQP-5) rabbit polyclonal antibody (1:300 dilution; bs-1554R; Bioss),
193	anti-Axin-2 rabbit polyclonal antibody (1:300 dilution; GTX31822; Genetex, Irvine, CA,
194	USA) or anti-E-cadherin rabbit polyclonal antibody (1:300 dilution; GTX477; Genetex)
195	at 4°C overnight. On the following day, the AECs were incubated with Alexa Fluor 488
196	goat anti-rabbit IgG antibody (1:500; A11008; Invitrogen, Carlsbad, CA, USA) as the
197	secondary antibody at 20–30°C for 60 min.
198	The harvested AEC sheets were fixed in 4% paraformaldehyde and either
199	processed into 5-µm-thick paraffin wax-embedded sections (for cross-sectional
200	observations) or not further processed (planar observations). The sections were
201	treated with anti-SP-A rabbit polyclonal antibody (1:200 dilution; bs-10265R; Bioss),
202	anti-SP-C rabbit polyclonal antibody (1:100 dilution; bs-10067R; Bioss), anti-SP-D
203	rabbit polyclonal antibody (1:200 dilution; bs-1583R; Bioss), anti-AQP-5 rabbit
204	polyclonal antibody (1:200 dilution; bs-1554R; Bioss), anti-Axin-2 rabbit polyclonal

205	antibody (1:100 dilution; GTX31822; Genetex) or anti-E-cadherin rabbit polyclonal
206	antibody (1:100 dilution; GTX477; Genetex) at 4°C overnight. Subsequently, the
207	sections were incubated with Alexa Fluor 488 goat anti-rabbit IgG antibody (1:500
208	dilution; A11008; Invitrogen) as the secondary antibody at 20–30°C for 30 min. In
209	addition, cross-sectional observations of the cell sheets were made after staining with
210	hematoxylin and eosin (HE) using conventional methods.
211	Resected lung tissues were fixed in 4% paraformaldehyde and routinely processed
212	into 5-µm-thick paraffin-embedded sections. For histology, HE staining was
213	performed by conventional methods. For immunohistochemistry, the tissues were
214	blocked with 5% FBS in PBS for 60 min and then incubated with anti-GFP rabbit
215	polyclonal antibody (1:100 dilution; ab290; Abcam, Cambridge, UK), anti-SP-A rabbit
216	polyclonal antibody (1:100 dilution; bs-10265R; Bioss), anti-SP-C rabbit polyclonal
217	antibody (1:100 dilution; bs-10067R; Bioss), anti-SP-D rabbit polyclonal antibody
218	(1:100 dilution; bs-1583R; Bioss), anti-AQP-5 rabbit polyclonal antibody (1:100
219	dilution; bs-1554R; Bioss) or anti-Axin-2 rabbit polyclonal antibody (1:100 dilution;
220	GTX31822; Genetex) at 4°C overnight. Then, the tissues were incubated with Opal
221	Polymer Anti-Rabbit HRP (1:5 dilution) and either the Opal 520 (1:100 dilution) or

222	Opal 570 (1:100 dilution) fluorophore (NEL840001KT; Akoya Biosciences Inc.,
223	Marlborough, MA, USA) at 20–30°C for 10 min. Subsequently, microwave treatment
224	was used to remove the primary and secondary antibodies and non-specific staining
225	and to reduce tissue autofluorescence. Another round of staining for additional
226	targets was performed after microwave treatment without the risk of antibody
227	cross-reactivity. The primary antibody was omitted in negative control experiments.
228	Tissue sections stained using immunohistochemical methods were observed using a
229	confocal laser scanning microscope (FluoView FV1200; Olympus Corporation, Tokyo,
230	Japan).
231	2.5 Statistical analysis
232	JMP Pro 14.0.0 (SAS Institute, Cary, NC, USA) was used for data analysis. Cell
233	counts are presented as boxplots (showing the median, interquartile range and
234	range) and were compared between groups using the Steel-Dwass test. A p-value
235	less than 0.05 (p < 0.05) was considered statistically significant.
236	
237	3 Results
238	3.1 Optimization of the conditions for feeder-free culture of rat AECs

239	Primary AECs were cultured in AEpiCM under feeder-free conditions in the
240	absence or presence of a ROCK inhibitor and in the absence or presence of
241	rLN511E8 as a coating on the tissue culture dish (i.e., four experimental groups; see
242	Fig. 2a). When both the ROCK inhibitor and rLN511E8-coated culture dish were used,
243	the number of AECs obtained after 7 days of culture was significantly higher than that
244	in the other three groups (Fig. 2b). Phase-contrast microscopy demonstrated that the
245	cultured AECs exhibited a polygonal, cobblestone-like morphology characteristic of
246	epithelial cells (Fig. 2c). Furthermore, immunohistochemical analyses (Fig. 2d–h)
247	revealed that the cultured AECs expressed AQP-5 (a marker of AECIs), SP-A, SP-C,
248	SP-D (markers of AECIIs) and Axin-2 (a marker of a subpopulation of AECIIs capable
249	of trans-differentiation into AECIs) [8,16,17].
250	3.2 Optimization of the conditions for fabrication of rat AEC sheets
251	In our initial attempts to fabricate rat AEC sheets, AECs were subcultured on
252	temperature-responsive culture dishes in AEpiCM containing a ROCK inhibitor.
253	However, after 7 days of subculture, confluent AECs could not be harvested as a cell
254	sheet from the temperature-responsive culture dish when the temperature was
255	reduced from 37°C to 20°C for 30 min (Fig. 3a). Therefore, we altered the protocol by

256	adding an additional stage. First, the AECs were subcultured for 7 days as described
257	above and confirmed to be confluent. Then, the AECs were cultured for a further 3
258	days in AEpiCM containing a ROCK inhibitor and 200 mg/L calcium chloride. Using
259	this approach, it was possible to harvest the AECs from the temperature-responsive
260	culture dish as an intact cell sheet by reducing the temperature from 37°C to 20°C for
261	30 min (Fig. 3b). Staining with HE showed that the AEC sheet was composed of a
262	single layer of cells (Fig. 3c). Immunohistochemical analyses revealed that the cells
263	expressed E-cadherin when cultured in the presence of calcium chloride but not when
264	cultured in the absence of calcium chloride (Fig. 3a,b). Additionally, the AEC sheets
265	expressed AQP-5, SP-A, SP-C, SP-D and Axin-2 (Fig. 3d-h).

266 **3.3 Transplantation of rat AEC sheets**

Seven days after the transplantation of three GFP-AEC sheets onto a partially resected region of the left lung of an athymic rat, illumination of the transplantation region with fluorescent light (488 nm) demonstrated the presence of GFP-positive cells that were derived from the transplanted cell sheets (Fig. 4a,b). Staining with HE revealed that the transplanted AEC sheets were tightly adhered to the lung tissue with no air spaces found between the cell sheets and pulmonary parenchyma (Fig. 4c).

273	Immunohistochemical analyses revealed that cells on the surface of the lung
274	expressed GFP and that the same region also expressed AQP-5, SP-A, SP-C, SP-D
275	and Axin-2 (Fig. 4d–h). Positive staining was not observed when the primary
276	antibodies were omitted in negative control experiments (Fig. 4i).
277	Immunohistochemical analyses of lung tissues without transplanted GFP-AEC sheets
278	are shown in Supplemental Fig. 1.
279	
280	4 Discussion
281	The present study has described the successful fabrication of AEC sheets under
282	feeder-free conditions. Furthermore, the fabricated cell sheets continued to express
283	AEC-specific proteins after transplantation onto the lung. We propose that the AEC
284	sheets bioengineered using our technique may have potential for development into a
285	new regenerative therapy for lung injury.
286	One of the challenges facing researchers striving to develop regenerative therapies
287	for respiratory diseases is the structural complexity of the pulmonary system, which is
288	highly specialized for gas exchange. Previously, we reported that
289	temperature-responsive culture dishes could be used to fabricate transplantable cell

290	sheets without the need for additional synthetic or biological materials such as
291	scaffolds [18,19]. Various cell types can attach to, proliferate on and spread along
292	these unique surfaces when cultured under standard conditions at 37°C, with cell
293	growth comparable to that seen on ordinary tissue culture dishes. However, a major
294	advantage of temperature-responsive dishes is that cultured cells together with their
295	extracellular matrix can be harvested non-invasively as intact sheets (without the
296	need for proteolytic enzymes) simply by reducing the temperature to 20°C. This
297	non-destructive method of harvesting maintains the cell-to-cell junctions and
298	extracellular matrix proteins in the cell sheet construct [18,19]. Notably, cell
299	sheet-based regenerative therapies for various organs have been applied in the
300	clinical setting [20-22]. Furthermore, cell sheet-based therapy was reported to be
301	superior to cell infusion-based therapy in terms of cell viability, number of engrafted
302	cells and transplanted cell function [23]. Our previous research in the field of
303	respiratory medicine showed that autologous dermal fibroblast sheets harvested from
304	temperature-responsive culture dishes could be used as a pleural substitute to seal
305	intraoperative air leaks in the lungs in both animal models and clinical studies [24-27].
306	The AEC sheet described in the present study was fabricated using cell sheet-based

307	tissue engineering. These results indicate that further development of this technique
308	will allow AEC sheets to be used clinically to promote lung regeneration and thereby
309	treat pulmonary disorders that currently require lung transplantation.
310	Because safety is of paramount importance, major concerns have been raised
311	about regenerative therapies based on cells derived from different species. Therefore
312	the objectives of this study were to develop a method for feeder-free cultivation of
313	AECs and to find suitable conditions for the fabrication of AEC sheets for
314	transplantation in vivo. Feeder-free culture on an rLN511E8-coated dish in LCM
315	containing a ROCK inhibitor promoted rapid AEC growth. In the culture method of this
316	study, AECII did not completely trans-differentiate into AECI in vitro and remained
317	after transplantation, possibly preserving the characteristics of both AECI and AECII.
318	ROCK-induced Rho signaling leads to the phosphorylation and activation of
319	non-muscle myosin light chain II and hence muscle contraction [28,29]. Non-muscle
320	myosin light chain II is a key modulator of cell behavior that has been implicated in
321	cell migration, proliferation and differentiation [30,31]. ROCK inhibitors have been
322	widely used in the culture of several cell types because of their ability to suppress
323	apoptosis, and pharmacological inhibition of ROCK has been shown to enhance the

324	proliferation of keratinocytes from foreskin, ectocervical and vaginal tissues [32]. Ca ²⁺
325	induces calmodulin-mediated signaling that regulates the activity of the myosin light
326	chain [33]. Ca ²⁺ is also recognized as a trans-differentiation-inducing factor for
327	epithelial cells and is essential for cell-cell adhesion via E-cadherin [34,35]. LCM
328	prevents the differentiation of epithelial cells and promotes cell expansion [36].
329	Remarkably, the combination of LCM and a ROCK inhibitor has been reported to
330	cause a 10 ¹² -fold increase in epithelial cell numbers [37]. rLN511E8 strongly supports
331	the long-term, feeder-free culture of several cell types. For example, a previous study
332	utilized a feeder-free culture system and recombinant laminin-coated dishes to
333	generate human pluripotent stem cells that could be differentiated into retinal pigment
334	epithelial cells and corneal limbal epithelial stem cells, and the authors developed
335	cryopreservation protocols for all three cell types [14]. In the present study, AECs
336	were also able to grow rapidly on rLN511E8-coated dishes when cultured in LCM
337	containing a ROCK inhibitor under feeder-free conditions. This new method of
338	culturing AECs under feeder-free conditions is straightforward and would circumvent
339	safety issues regarding the use of xenogeneic feeder cells if used as the basis of a
340	regenerative therapy.

341	AECs cultured in LCM containing a ROCK inhibitor could not be harvested as a cell
342	sheet from the temperature-responsive culture dish due to insufficient cell-cell
343	adhesion. Since Ca ²⁺ is essential for cell–cell adhesion via E-cadherin, we altered the
344	protocol so that the confluent AECs were further cultured in LCM supplemented with
345	Ca ²⁺ . AECs cultured in LCM containing additional Ca ²⁺ exhibited expression of
346	E-cadherin (unlike cells not cultured in Ca ²⁺ -supplemented medium) and could be
347	harvested as a cell sheet, likely due to the strengthening of cell-cell adhesions via
348	E-cadherin. A potential disadvantage of this approach is that Ca ²⁺ is a
349	differentiation-inducing factor for epithelial cells. However, immunohistochemical
350	analyses showed that the cell sheets harvested after culture in Ca ²⁺ -supplemented
351	medium for 3 days exhibited localized expression of AEC-specific proteins.
352	GFP-AEC sheets transplanted onto rat lung continued to express AQP-5 (a marker
353	of AECIs), SP-A, SP-C, SP-D (markers of AECIIs) and Axin-2 (a marker of a
354	subpopulation of AECIIs capable of trans-differentiation into AECIs), which indicates
355	that the cell sheets retained the characteristics of AECs after transplantation. There is
356	a paucity of data regarding the fate of AECs after transplantation onto the lung in vivo.
357	Lung fibroblasts reside beneath the alveolar epithelium and make contact with AECs

358	through gaps in the basement membrane [38]. Pulmonary fibroblasts secrete
359	important soluble factors that have been reported to limit the trans-differentiation and
360	promote the proliferation of AECs [39]. In addition, trans-differentiation is slowed
361	when AECs are grown under air-liquid interface conditions in vitro [4]. Therefore,
362	environmental factors such as the presence of pulmonary fibroblasts and an air-liquid
363	interface likely inhibit the differentiation of AECs in vivo.
364	This study has some limitations. First, AEC sheet engraftment was only evaluated
365	7 days after transplantation in vivo, so it remains unclear whether the transplanted
366	cells would survive as AECs for a longer period of time. Whether AEC sheets are
367	maintained long-term after transplantation will require additional evaluation. Second,
368	although engraftment of the AEC sheet onto the lung was demonstrated from a
369	structural perspective, the functionality of the AEC sheet after transplantation was not
370	assessed. Further research will be needed to establish whether transplanted AEC
371	sheets exert functional effects such as improvements in pulmonary function or
372	suppression of lung disease progression. In addition, although feeder-free culture on
373	an rLN511E8-coated dish in LCM containing a ROCK inhibitor promoted rapid AEC
374	growth, the effects of each on AECs and differentiation have not been investigated.

375 Pharmacological aspects of the effects on AECs will be needed to investigate.376

5. Conclusions

378	We have bioengineered AEC sheets under feeder-free conditions that retain the
379	morphological features of AECs after transplantation onto the lung in vivo. The
380	ultimate objective of our research is to develop a regenerative therapy that can
381	reconstruct the alveolar structure in an injured lung, and the research described in
382	this study is part of that process. One of our future aims is to fabricate
383	three-dimensional lung tissue using AEC sheets and enlarge it step-by-step in vitro.
384	Furthermore, we will investigate whether the transplantation of AEC sheets onto
385	decellularized pulmonary tissue would generate lung constructs that could be used as
386	a regenerative therapy.
387	
388	Declaration of competing interests
389	Tatsuya Shimizu is a shareholder of CellSeed Inc. Tokyo Women's Medical
390	University received research funding from CellSeed Inc. The other authors have no
391	competing interests to declare.

393 Acknowledgements

- 394 This work was supported by JSPS KAKENHI grant number JP21K08913. The
- 395 authors thank Dr. Tamami Isaka (Department of Thoracic Surgery, Tokyo Women's
- 396 Medical University, Tokyo, Japan) for supporting this study. We also thank
- 397 OXMEDCOMMS (<u>www.oxmedcomms.com</u>) for help with the writing of this
- 398 manuscript.

399 References

400	1.	Neizer H, Singh GB, Gupta S, Singh SK. Addressing donor-organ shortages using
401		extended criteria in lung transplantation. Ann Cardiothorac Surg. 2020;9:49-50.
402	2.	Edgar L, Pu T, Porter B, Aziz JM, La Pointe C, Asthana A, et al. Regenerative
403		medicine, organ bioengineering and transplantation. Br J Surg.
404		2020;107:793-800.
405	3.	Knudsen L, Ochs M. The micromechanics of lung alveoli: structure and function of
406		surfactant and tissue components. Histochem Cell Biol. 2018;150:661-76.
407	4.	Qian Z, Travanty EA, Oko L, Edeen K, Berglund A, Wang J, et al. Innate immune
408		response of human alveolar type II cells infected with severe acute respiratory
409		syndrome-coronavirus. Am J Respir Cell Mol Biol. 2013;48:742-8.
410	5.	Bove PF, Dang H, Cheluvaraju C, Jones LC, Liu X, O'Neal WK, et al. Breaking the
411		in vitro alveolar type II cell proliferation barrier while retaining ion transport
412		properties. Am J Respir Cell Mol Biol. 2014;50:767-76.
413	6.	Tanjore H, Degryse AL, Crossno PF, Xu XC, McConaha ME, Jones BR, et al.
414		β -catenin in the alveolar epithelium protects from lung fibrosis after intratracheal
415		bleomycin. Am J Respir Crit Care Med. 2013;187:630-9.

416	7.	Desai TJ, Brownfield DG, Krasnow MA. Alveolar progenitor and stem cells in lung
417		development, renewal and cancer. Nature. 2014;507:190-4.
418	8.	Nabhan AN, Brownfield DG, Harbury PB, Krasnow MA, Desai TJ. Single-cell Wnt
419		signaling niches maintain stemness of alveolar type 2 cells. Science.
420		2018;359:1118-23.
421	9.	Zacharias WJ, Frank DB, Zepp JA, Morley MP, Alkhaleel FA, Kong J, et al.
422		Regeneration of the lung alveolus by an evolutionarily conserved epithelial
423		progenitor. Nature. 2018;555:251-5.
424	10	. Hogan B. Stemming lung disease? N Engl J Med. 2018;378:2439-40.
425	11	. Llames S, García-Pérez E, Meana Á, Larcher F, del Río M. Feeder layer cell
426		actions and applications. Tissue Eng Part B Rev. 2015;21:345-53.
427	12	. Aslanova A, Takagi R, Yamato M, Okano T, Yamamoto M. A chemically defined
428		culture medium containing Rho kinase inhibitor Y-27632 for the fabrication of
429		stratified squamous epithelial cell grafts. Biochem Biophys Res Commun.
430		2015;460:123-9.

431	13. Rodin S, Domogatskaya A, Ström S, Hansson EM, Chien KR, Inzunza J, et al.
432	Long-term self-renewal of human pluripotent stem cells on human recombinant
433	laminin-511. Nat Biotechnol. 2010;28:611-5.
434	14. Hongisto H, Ilmarinen T, Vattulainen M, Mikhailova A, Skottman H. Xeno- and
435	feeder-free differentiation of human pluripotent stem cells to two distinct ocular
436	epithelial cell types using simple modifications of one method. Stem Cell Res Ther
437	2017;8:291.
438	15. ST Boyce, RG Ham. Calcium-regulated differentiation of normal human epidermal
439	keratinocytes in chemically defined clonal culture and serum-free serial culture. J
440	Invest Dermatol. 1983;81:33s-40s.
441	16. Beers MF, Moodley Y. When is an alveolar type 2 cell an alveolar type 2 cell? A
442	conundrum for lung stem cell biology and regenerative medicine. Am J Respir Cell
443	Mol Biol. 2017;57:18-27.
444	17. Flodby P, Li C, Liu Y, Wang H, Rieger ME, Minoo P, et al. Cell-specific expression
445	of aquaporin-5 (Aqp5) in alveolar epithelium is directed by GATA6/Sp1 via histone
446	acetylation. Sci Rep. 2017;7:3473.

447	18. Shimizu T, Yamato M, Isoi Y, Akutsu T, Setomaru T, Abe K, et al. Fabrication of
448	pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation
449	technique and temperature-responsive cell culture surfaces. Circ Res.
450	2002;90:e40.
451	19. Yamato M, Okano T. Cell sheet engineering. Mater Today. 2004;7:42-7.
452	20. Nishida K, Yamato M, Hayashida Y, Watanabe K, Yamamoto K, Adachi E, et al.
453	Corneal reconstruction with tissue-engineered cell sheets composed of
454	autologous oral mucosal epithelium. N Engl J Med. 2004;351:1187-96.
455	21. Ohki T, Yamato M, Ota M, Takagi R, Murakami D, Kondo M, et al. Prevention of
456	esophageal stricture after endoscopic submucosal dissection using
457	tissue-engineered cell sheets. Gastroenterology. 2012;143:582-8.e2.
458	22. Iwata T, Yamato M, Washio K, Yoshida T, Tsumanuma Y, Yamada A, et al.
459	Periodontal regeneration with autologous periodontal ligament-derived cell sheets
460	 – a safety and efficacy study in ten patients. Regen Ther. 2018;9:38-44.
461	23. Sekine H, Shimizu T, Dobashi I, Matsuura K, Hagiwara N, Takahashi M, et al.
462	Cardiac cell sheet transplantation improves damaged heart function via superior

463	cell survival in comparison with dissociated cell injection. Tissue Eng Part A.
464	2011;17:2973-80.
465	24. Kanzaki M, Takagi R, Washio K, Kokubo M, Yamato M. Bio-artificial pleura using
466	an autologous dermal fibroblast sheet. NPJ Regen Med. 2017;2:26.
467	25. Kanzaki M, Takagi R, Washio K, Kokubo M, Mitsuboshi S, Isaka T, et al.
468	Bio-artificial pleura using autologous dermal fibroblast sheets to mitigate air leaks
469	during thoracoscopic lung resection. NPJ Regen Med. 2021;6:2.
470	26. Kanzaki M, Yamato M, Yang J, Sekine H, Kohno C, Takagi R, et al. Dynamic
471	sealing of lung air leaks by the transplantation of tissue engineered cell sheets.
472	Biomaterials. 2007;28:4294-302.
473	27. Kanzaki M, Yamato M, Yang J, Sekine H, Takagi R, Isaka T, et al. Functional
474	closure of visceral pleural defects by autologous tissue engineered cell sheets.
475	Eur J Cardiothorac Surg. 2008;34:864-9.
476	28. Wilkinson S, Paterson HF, Marshall CJ. Cdc42-MRCK and Rho-ROCK signalling
477	cooperate in myosin phosphorylation and cell invasion. Nat Cell Biol.
478	2005;7:255-61.
479	29. Schwartz M. Rho signalling at a glance. J Cell Sci. 2004;117:5457-8.

480	30. Nguyen-Ngoc KV,	Silvestri VL,	Georgess D,	Fairchild AN,	Ewald AJ. Mosaic le	oss
		,		,		

- 481 of non-muscle myosin IIA and IIB is sufficient to induce mammary epithelial
- 482 proliferation. J Cell Sci. 2017;130:3213-21.
- 483 31. Boraas LC, Pineda ET, Ahsan T. Actin and myosin II modulate differentiation of
- 484 pluripotent stem cells. PLoS ONE. 2018;13:e0195588.
- 485 32. Chapman S, Liu X, Meyers C, Schlegel R, McBride AA. Human keratinocytes are
- 486 efficiently immortallyzed by a Rho kinase inhibitor. J Clin Invest.
- 487 2010;120:2619-26.
- 488 33. Scholey JM, Taylor KA, Kendrick-Jones J. Regulation of non-muscle myosin
- 489 assembly by calmodulin-dependent light chain kinase. Nature. 1980;287:233-5.
- 490 34. Ma XL, Liu HQ. Effect of calcium on the proliferation and differentiation of murine
- 491 corneal epithelial cells in vitro. Int J Ophthalmol. 2011;4:247-9.
- 492 35. D'Souza SJ, Pajak A, Balazsi K, Dagnino L. Ca²⁺ and BMP-6 signaling regulate
- 493 E2F during epidermal keratinocyte differentiation. J Biol Chem.
- 494 2011;276:23531-8.
- 495 36. Peehl DM, Stamey TA. Serum-free growth of adult human prostatic epithelial cells.
- 496 In Vitro Cell Dev Biol. 1986;22:82-90.

497	37. Zhang C, Lee HJ, Shrivastava A, Wang R, McQuiston TJ, Challberg SS, et al.
498	Long-term in vitro expansion of epithelial stem cells enabled by pharmacological
499	inhibition of PAK1-ROCK-myosin II and TGF-beta signaling. Cell Rep.
500	2018;25:598-610.e5.
501	38. Sirianni FE, Chu FS, Walker DC. Human alveolar wall fibroblasts directly link
502	epithelial type 2 cells to capillary endothelium. Am J Respir Crit Care Med.
503	2003;168:1532-7.
504	39. Ushakumary MG, Riccetti M, Perl AT. Resident interstitial lung fibroblasts and
505	their role in alveolar stem cell niche development, homeostasis, injury, and
506	regeneration. Stem Cells Transl Med. 2021;10:1021-32.

508 Figure legends

509	Figure 1. Schematic diagram of the methods used to fabricate and transplant
510	alveolar epithelial cell (AEC) sheets. Lung tissues were carefully excised from
511	male rats and finely minced, and cells were dissociated with elastase. A Percoll
512	gradient was used to separate AECs from other cell types in the cell suspension. The
513	isolated AECs were cultured under feeder-free conditions, and the expanded cells
514	were seeded and cultured on temperature-responsive culture dishes. After subculture,
515	the cells were harvested from the temperature-responsive dish as an AEC sheet by
516	reducing the temperature from 37°C to 20°C for 30 min. Each AEC sheet was
517	transplanted onto a partially resected region of the left lung or onto the left gluteal
518	musculature of an athymic rat.
519	
520	Figure 2. Alveolar epithelial cells (AECs) cultured under feeder-free conditions.
521	(a) Primary AECs were cultured under feeder-free conditions in the absence or
522	presence of a rho kinase (ROCK) inhibitor (10 mM Y-27632) and in the absence or
523	presence of recombinantly expressed laminin-511 E8 fragment (rLN511E8) as a
524	coating on the tissue culture dish (i.e., four experimental groups). The cultured AECs

525	were harvested 7 days later, and the number of cells was counted. (b) Comparison of
526	the number of AECs expanded under each feeder-free condition. The data are
527	displayed as box plots showing the median, interquartile range and range (n = 7). $*$ p
528	< 0.05. (c) Phase-contrast microscopy of AECs cultured on an rLN511E8-coated dish
529	in alveolar epithelial cell medium (AEpiCM) containing a ROCK inhibitor. The cultured
530	AECs exhibited a polygonal, cobblestone-like morphology characteristic of epithelial
531	cells. (d–h) Immunohistochemical analyses of AECs cultured on rLN511E8-coated
532	dishes in AEpiCM containing a ROCK inhibitor. The cultured AECs were
533	immunostained using primary antibodies against aquaporin-5 (AQP-5), surfactant
534	protein (SP)-A, SP-C, SP-D and Axin-2.
535	
536	Figure 3. Fabrication of alveolar epithelial cell (AEC) sheets. (a) AECs were
537	subcultured on 35-mm-diameter temperature-responsive culture dishes in alveolar
538	epithelial cell medium (AEpiCM) containing a rho kinase (ROCK) inhibitor (10 mM
539	Y-27632). However, after 7 days of subculture, confluent AECs could not be
540	harvested as a cell sheet when the temperature was reduced from 37°C to 20°C for
541	30 min. Immunohistochemical analysis revealed that cells cultured under these

542	conditions did not express E-cadherin. (b) AECs were subcultured on
543	35-mm-diameter temperature-responsive culture dishes in AEpiCM containing a
544	ROCK inhibitor, and the cells were confirmed to be confluent after 7 days. Then, the
545	AECs were cultured for a further 3 days in AEpiCM containing a ROCK inhibitor and
546	supplemented with 200 mg/L calcium chloride. Under these conditions, the AECs
547	could be harvested as a cell sheet by reducing the temperature from 37°C to 20°C for
548	30 min. Immunohistochemical analysis revealed that cells cultured using this protocol
549	expressed E-cadherin. (c-h) Hematoxylin and eosin (HE) staining and
550	immunofluorescence staining of AEC sheets fabricated under the feeder-free
551	conditions described in (b). Positive staining for aquaporin-5 (AQP-5), surfactant
552	protein (SP)-A, SP-C, SP-D and Axin-2 showed that the cultured cells were AECs.
553	Cross-sectional (upper panel) and planar (lower panel) views were obtained for the
554	immunohistochemical analyses.
555	
556	Figure 4. Analyses of green fluorescent protein (GFP)-expressing alveolar
557	epithelial cell (AEC) sheets (GFP-AEC sheets) after transplantation onto the
558	lung. (a) Three GFP-AEC sheets were transplanted onto a partially resected area of

559	the left lung of an athymic rat. (b) Seven days later, illumination of the transplantation
560	region with fluorescent light revealed the presence of GFP-positive cells, which were
561	derived from the transplanted cell sheets. (c-i) Histological and immunohistochemical
562	analyses of lung tissues and transplanted GFP-AEC sheets. The lung tissues and
563	transplanted GFP-AEC sheets were subjected to HE staining or immunofluorescence
564	staining for GFP, aquaporin-5 (AQP-5), surfactant protein (SP)-A, SP-C, SP-D or
565	Axin-2. Staining with HE demonstrated that the transplanted AEC sheets were tightly
566	adhered to the lung tissue, and no air spaces were found between the cell sheets and
567	the pulmonary parenchyma (arrowheads). The immunohistochemical analyses
568	revealed that cells on the lung surface expressed GFP (white arrows), and the same
569	region also expressed AQP-5, SP-A, SP-C, SP-D and Axin-2. No staining was
570	observed when the primary antibodies were omitted in negative control experiments.
571	
572	Supplemental figure 1. Immunohistochemical analyses of lung tissues without
573	transplanted green fluorescent protein (GFP)-expressing alveolar epithelial cell
574	(AEC) sheets. (a) No staining was observed when the primary antibodies were

- 575 omitted in negative control experiments. (b-e) Immunofluorescence staining of lung
- tissues for aquaporin-5 (AQP-5), surfactant protein (SP)-A, SP-C, SP-D and Axin-2.

Figure 2

Figure 3 **a**

DAPI / E-cadherin

Bars = 50 µm

Figure 4

Bars = 50 µm

Supplemental Figure 1

a DAPI

b DAPI / SP-A / AQP-5

c DAPI / Axin2 / AQP5

d DAPI / SP-C / AQP5

e DAPI / SP-D / AQP-5

Bars = 50 µm