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Abstract  

Purpose: High-speed cone-beam computed tomography (CBCT) scan for image-guided 

radiotherapy (IGRT) can reduce both the scan time and the exposure dose. However, it causes 

noise and artifacts in the reconstructed images due to the lower number of acquired projection 

data. The purpose of this study is to improve the image quality of high-speed CBCT using a 

deep convolutional neural network (DCNN). 

Methods: CBCT images of 36 prostate cancer patients were selected. The CBCT images 

acquired at normal scan speed were defined as CBCT100%. Simulated high-speed CBCT images 

acquired at twofold and fourfold scan speed were created, which were defined as CBCT50% and 

CBCT25%, respectively. The image quality of the CBCT50% was treated as the requirement for 

IGRT in this study because previous studies reported that its image is sufficient with respect to 

IGRT. The DCNN model was trained to learn direct mapping from CBCT25% to the 

corresponding CBCT100%. The performance of the DCNN model was evaluated using the 

sixfold cross-validation method. CBCT images generated by DCNN (CBCT25%+DCNN) were 

evaluated for voxel value accuracy and image quality.  

Results: The DCNN model can process CBCT25% of a new patient within 0.06 s/slice. The 

CBCT25%+DCNN was comparable to the CBCT50% in terms of both voxel value accuracy and 

image quality.  

Conclusions: We developed a DCNN model to remove noise and artifacts from high-speed 

CBCT. We emphasize that it is possible to reduce exposure to one quarter and to increase the 

CBCT scan speed by a factor of four.  

 

Key words: Radiotherapy, Cone-beam computed tomography, Image-guided radiotherapy, 

Convolutional neural network 
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1. Introduction 

Image-guided radiotherapy (IGRT) in prostate cancer has become a standard treatment in 

therapies such as intensity modulation radiotherapy and volumetric modulation radiotherapy 

(VMAT), which deliver high-dose radiation. In particular, previous studies have shown that 

the use of daily IGRT in prostate cancer improves clinical target volume (CTV) coverage and 

reduces rectal dose, gastrointestinal toxicity, and urinary toxicity [1-5]. Currently, two IGRT 

modalities are mainly used for prostate cancer: a combination of a fiducial marker implanted 

in the prostate and orthogonal portal imaging and cone-beam computed tomography (CBCT). 

CBCT does not require an invasive procedure and can obtain three-dimensional information 

of target and normal organs. Daily IGRT using CBCT in prostate cancer has limitations in 

terms of exposure dose [6-8]. For example, if a dose of 2 cGy is delivered per scan during 

each of 40 fractions, it amounts to an accumulated dose of 0.8 Gy over the course of 

treatment [8]. Furthermore, a CBCT scan requires approximately 60 to 120 s because 

projection data are continuously acquired while a linear accelerator (linac) gantry is rotated at 

a constant speed of approximately 3–6 deg/s. Extension of the total treatment time not only 

increases the probability of patient position error but also decreases patient throughput [9, 

10]. High-speed CBCT scan has been proposed to solve these problems [11-14]. Acquisition 

times can be reduced by increasing the gantry rotation speed. In addition, dose reduction can 

be realized because the frequency of the projection data acquisition is constant [11, 13]. 

However, it has been reported that a high-speed CBCT scan causes significant noise and 

several artifacts in the CBCT images owing to the lower number of acquired projection data. 

This significantly affects the IGRT accuracy [11, 13]. Westberg et al. [11] evaluated the 

accuracy of IGRT in high-speed CBCT images. The projection data were processed (sub-

sampling and reconstructing) to simulate high-speed CBCT images by sub-sampling and 

reconstructing projection data to simulate high-speed CBCT images. They reported that 

IGRT accuracy did not decrease in the case where the number of projection data is more than 

50% of the original data. If the number of projection data is reduced to 25% of the original 

data, artifacts become significant and affect IGRT accuracy by more than 1 mm at maximum. 

We applied a deep convolutional neural network (DCNN) to remove noise and artifacts 

from high-speed CBCT images. Currently, several deep learning algorithms have been 

proposed to improve image quality [15-22]. In particular, DCNNs are powerful techniques 
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for feature extraction and they have been applied to image denoising and artifacts reduction. 

For example, Kida et al. proposed a technique to improve the image quality of CBCT images 

by applying a DCNN to learn mappings from CBCT images to their corresponding planning 

CT images [21]. Zhang et al. used a DCNN-based approach to reduce metal artifacts on CT 

images [17]. In this study, we developed a DCNN-based method to reduce the noise and 

artifacts from high-speed CBCT images and evaluated its effectiveness. 

 

2. Materials and methods 

2.1. Data acquisition and processing 

Thirty-six prostate cancer patients treated with VMAT were selected. CBCT datasets 

were acquired using the X‐ray Volumetric Imager (XVI) of the Elekta Synergy (Elekta, 

Stockholm, Sweden) system (version 4.2.2) at the first day of the treatment. Table 1 shows 

the acquisition parameters. All CBCT datasets were reconstructed over a 410 mm × 410 mm 

× 120 mm volume at a resolution of 1.0 mm. 

In this study, we created post-processed reconstruction data from XVI to mimic high-

speed CBCT images. Figure 1 shows the procedure for reconstructing each CBCT image. 

First, the original CBCT images were projected using the Radon transform, and 480 

imaginary projection data at angles from 0° to 360° were created. Three types of CBCT 

images were then reconstructed from the projection data. We defined the CBCT images 

reconstructed from 480 projection data (all projection data) as CBCT100%. By sub-sampling 

the projection data in ratios of 1:2 and 1:4, CBCT50% and CBCT25% were reconstructed, 

respectively. Here, the projection data were evenly subsampled over the initial set of 

projections. CBCT50% and CBCT25% mimicked high-speed CBCT images acquired at twofold 

and fourfold gantry rotation speeds, respectively. All the CBCT images were reconstructed 

using the filtered back projection with parallel-beam geometry based on the scikit-image 

image processing library [23]. Because the accuracy of CBCT50% is sufficient with respect to 

IGRT [11], its image quality was treated as the requirement for IGRT in this study.  

 

2.2. DCNN architecture 
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Previous studies have shown that the network receptor field must be sufficiently large 

and deep to capture artifacts that spread throughout images [18, 21, 22]. We modified the 

network as shown in Figure 2. The hyper parameters were optimized by minimizing the 

absolute error between the predicted images and the corresponding ground truth images. The 

front end of the network has a pooling layer that is used after each stage, while the back end 

uses an up-sampling layer. It has a shortcut to link the results from the front end of the 

network to the back end. The network uses a total of 18 convolution layers and rectified 

linear units, and we applied zero padding so that the image size does not decrease after 

passing through the convolution layer. This model was implemented using TensorFlow and 

Keras as the backend. 

 

2.3. Sixfold cross-validation of U-net CNN model 

The performance of the constructed U-net CNN model was evaluated using the 

sixfold cross-validation method because the sample size was small. The CBCT datasets of six 

patients were used as a test set each time, and the CBCT datasets of the remaining 30 patients 

were used as training data for the model per slice. CBCT images of all slices (120 

slices/patient) were used for DCNN training. Data augmentation was performed before the 

training process to increase the amount of training data, and randomly translated images were 

added to the training data. After applying augmentation, the number of training subjects 

increased from 30 to 90, yielding a total of 10,080 paired CBCT25%–CBCT100% slices. A 

binary body mask was applied to all CBCT images to extract their body regions. This 

procedure was achieved by applying the Otsu auto-thresholding method on each CBCT 

image, and the voxel values outside the mask region were entirely replaced by zero. A pair of 

images of CBCT25% and CBCT100% was normalized to a voxel value in the range of zero to 

one. 

Training was performed by minimizing the loss function defined as the mean absolute 

error of pixel values between CBCT100% and CBCT images generated by DCNN 

(CBCT25%+DCNN). Using the Adam optimization algorithm, the parameters were set as 

follows: initial learning rate = 10−4, β1 = 0.9, β2 = 0.999, ε = 10−5 without applying dropout, 

and number of epochs = 150. After training, CBCT25% was used as the input for U-net, and 

the corresponding CBCT25%+DCNN was generated for each patient. In this study, the CBCT100% 

was treated as the ground truth. In addition, the impact of sample size on the training was 



 

 6 

investigated. Five, ten, and fourteen patients were randomly selected and training was 

performed with the same network parameters. All calculations were performed using a single 

GeForce RTX 2080 GPU with 8 GB memory, and the training was conducted with a mini-

batch size of 8. 

 

2.4. Voxel value deviations and image quality evaluation 

As the XVI 4.2.2 cannot be calibrated in Hounsfield Unit (HU), we did not evaluate 

the accuracy of the HU itself. We used mean absolute error (MAE) to evaluate the difference 

in voxel values between the input images and the images generated by the DCNN. Planning 

CT and CBCT were registered with bony structures or the prostate itself. The regions of 

interest (ROIs) were set to the prostates and femoral heads to evaluate local voxel value 

deviations as shown in Figure 3. The MAE of voxel values in each ROI was calculated as 

MAE = !
"∑ &'#$%&()') − '(#)()')&"

'*! ,   (1) 

where )' is the ,-th voxel, and - is the total number of voxels within the ROI. '#$#& is the 

evaluation value (voxel values in CBCT25%, CBCT50%, and CBCT25%+DCNN), and '(#) is the 

reference value (voxel values in CBCT100%). 

The obtained CBCT25%, CBCT50%, and CBCT25%+DCNN were also evaluated by the 

peak signal-to-noise ratio (PSNR) and structural similarity (SSIM) [24]. PSNR is derived 

from the mean square error and indicates the ratio of the maximum pixel intensity to the 

power of the distortion. The SSIM is a human visual system-based metric that evaluates 

different attributes such as luminance, contrast, and structure comprehensively. The PSNR 

and SSIM of CBCTs were measured based on CBCT100%, and their average values over 120 

slices were evaluated for each patient. The workflow used to evaluate the voxel value 

deviations and image quality for the CBCT25%+DCNN is shown in Figure 4.  

 

3. Results 

Figure 5 shows the voxel value histogram of the original CBCT and CBCT100% in the 

body region. The mean error between these images was 5.65 ± 18.5. The model was trained 

for 15.3 h per subject. Thus, the training required approximately 91.7 h to perform the sixfold 

cross-validation for 36 patients. Figure 6 shows one case of the training and test loss (mean 
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absolute error) over each epoch. The model converged and both training and test data 

performance were equivalent. After the model was trained, approximately 6.4 s (0.05 s per 

slice) was required to convert a new patient CBCT25% dataset to the CBCT25%+DCNN images. 

Figure 7 shows two different slices of CBCT25%, CBCT50%, and CBCT25%+DCNN images for 

patient number 16. Improvement can be seen in terms of noise and artifacts. 

Table 2 lists the MAE, SSIM, and PSNR in the prostate and femoral head regions of each 

patient. Figure 8 shows a histogram of the absolute error between each CBCT image and 

CBCT100% in the prostate and femoral head regions for a patient. The average MAE over all 

patients in the femoral head region for CBCT25%, CBCT50%, and CBCT25%+DCNN were 

26.7±4.73, 15.2±3.31, and 13.9±2.46, respectively. The corresponding values in the prostate 

region for CBCT25%, CBCT50%, and CBCT25%+DCNN were 22.6±3.56, 12.6±2.78, and 

12.0±2.85, respectively. The MAE of CBCT25%+DCNN was small in both the prostate and bone 

regions in comparison with that of CBCT25% (p-value < 0.01; Wilcoxon rank sum test). In 

contrast, there was no significant difference between the MAE of CBCT50% and that of 

CBCT25% + DCNN in both regions (p-value = 0.01 and 0.04; Wilcoxon rank sum test). On 

average, the SSIMs of CBCT25%, CBCT50%, and CBCT25%+DCNN were 0.94±0.02,�0.98±0.01, 

and 0.98±0.01, respectively. In terms of PSNR, CBCT25%, CBCT50%, and CBCT25%+DCNN 

were 45.3±1.13 dB, 51.6±2.03 dB, and 52.8±1.68 dB, respectively. SSIM and PSNR for the 

CBCT50% were larger than those for the CBCT25%+DCNN (p-value < 0.01; Wilcoxon rank sum 

test). This shows that the image quality of CBCT25%+DCNN is comparable to that of CBCT50%. 

Figure 9 shows the SSIM and PSNR of CBCT25% + DCNN for patient number 7 using the model 

trained by 5, 10, 14, and 30 patients. The SSIM and PSNR increased depending on the 

number of training data. 

 

4. Discussion 

We applied a DCNN to generate high-quality and high-speed CBCT images to learn 

direct mappings from CBCT25% to their corresponding CBCT100%. CBCT25%+DCNN was 

comparable to CBCT50%. Westberg et al. [11] reported that the accuracy of CBCT50% is 

sufficient with respect to IGRT. Thus, we concluded that CBCT25%+DCNN can be used for 

IGRT for prostate cancer. In fact, Kida et al. [21] reported an improvement in the image 

quality of CBCT images following application of U-net to learn mappings from CBCT 

images to their corresponding planning CT images for prostate cancer. The PSNR and SSIM 
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of those images generated by U-net were 53.0 dB and 0.98 at maximum, respectively. 

Although not directly comparable with the results of this method in modalities, our results 

meet the criteria of related studies. In terms of MAE, SSIM, and PSNR, there were no 

significant differences between CBCT50% and CBCT25% + DCNN.  

A Phase III trial comparing the effectiveness of daily and weekly IGRT for prostate 

cancer shows that daily IGRT reduces the risk of biochemical recurrences, clinical 

recurrences, and rectal toxicity compared with weekly IGRT [4]. However, daily IGRT 

causes higher exposure dose to normal organs [8], and currently, it is not commonly used in 

clinical routine. Our method would be helpful in changing this situation. Reducing the 

number of projections used for reconstruction to 25% is equivalent to reducing the dose to 

25% because the frequency of the projection data acquisition is constant. In other words, this 

study indicates that noise and artifacts reduction using DCNN can reduce exposure to almost 

one quarter of conventional exposure without sacrificing the image quality required for 

IGRT. In addition, it is possible that the CBCT scan speed can be increased by a factor of 

four without sacrificing the image quality required for IGRT. Speeding up the CBCT 

scanning can improve the treatment quality for individual patients and total patient 

throughput. It may also enable single breath-hold CBCT scans [12-14]. Whereas the fast 

gantry rotation of conventional linac could pose a collision hazard to patients, the ring gantry 

type linac should not be a problem in this regard. 

One of the limitations of this study is the small sample size used; therefore, the DCNN 

model was evaluated using the sixfold cross-validation method. In addition, the SSIM and 

PSNR increased with the number of samples used for training (i.e., 5, 10, 14, and 30 

patients). This means that the image quality of CBCT25% + DCNN would further improve if the 

number of samples used for training was larger than that used in this study. However, it 

should be noted that overfitting of the training data did not occur in this study, although the 

number was relatively small. We constructed a 2D DCNN model because of the limitations 

of GPU memory and number of training data. The accuracy would be further improved by 

using more advanced network architectures such as 3D DCNN and generative adversarial 

network. By increasing the training data, it may be possible to improve the image quality of 

the reconstructed images with a smaller amount of projection data. Furthermore, adding 

additional anatomical information in the training data such as the manually delineated 

contour of bony structures or prostate for the U-net can further improve the estimation 

accuracy. Further research is required for the proposed method to be applied to other organs 



 

 9 

such as the chest, head, and neck [20]. This study only used pelvic images for improving 

IGRT in the treatment of prostate cancer. 

The DCNN cannot remove an artifact included in both CBCT25% and CBCT100%. In fact, 

there is an artifact close to the couch in proximity to a patient’s skin with CBCT25%+DCNN 

because couch correction was not applied in the reconstruction process (see Figure 7 for 

CBCT25% and CBCT100%. However, this artifact would not affect IGRT accuracy because 

planning CT and CBCT are generally registered with the bony structure or prostate itself. 

Another limitation is the reconstruction process of the evaluated CBCT images, which does 

not incorporate the inherent weaknesses of CBCT. For example, CBCT has greater inter-

slices correlation and artifacts with reference to multislice CT. Westberg et al. [11] 

“deactivated” projections from the original CBCT raw data prior to reconstruction to simulate 

high-speed CBCT, and the reconstruction was made using an Elekta CBCT projector. In 

contrast, we first projected the original CBCT images from the XVI system and then 

reconstructed CBCT images using different numbers of projection data with the scikit-image 

image processing library. As the reconstruction algorithm used in this procedure is different 

from the original Elekta's reconstruction algorithm, the obtained CBCT images were not 

perfectly identical to the real CBCT images. As shown in Figure 5, there is no significant 

difference between these images. On the other hand, there is no guarantee that CBCT25% and 

CBCT50% will match the CBCT images made via “deactivated” projections from original 

CBCT images. Further, the results of our study cannot be generalized because it depends on 

the number of projections used for the reconstruction of CBCT100%. Currently, commonly 

used CBCT systems have >300 projections, whereas 480 projections were used in this study. 

As the number of projections decreases, so does the image quality of CBCT100%, CBCT50%, 

and CBCT25%. In such a case, it is unclear how much the image quality could be improved by 

using a DCNN.  

Reducing the imaging dose of CBCT is not a major advantage in stereotactic irradiation 

with a small number of fractions. 4D-CBCT is often used to assess the movement of liver and 

lung tumors during stereotactic body radiation therapy [25, 26], with 4D-CBCT consisting of 

ten phase images being reconstructed from the projection data of each phase. Smaller 

amounts of projection data, therefore, are used for reconstruction than for normal CBCT, 

leading to image quality degradation [25]. As shown by the results of the present study, we 

can expect to reduce noise and artifacts in 4D-CBCT using a DCNN. 
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5. Conclusion  

We developed a DCNN model for removing noise and artifacts from high-speed 

CBCT. An evaluation of the image quality and HU deviations demonstrated that 

CBCT25%+DCNN is sufficient for the required IGRT accuracy. We established that it is possible 

to reduce exposure to one quarter without sacrificing the quality required for IGRT and to 

increase the CBCT scan speed to a factor of four. Future work will include improvement of 

the process for simulating high-speed CBCT and further evaluation of the proposed method 

on larger datasets incorporating other anatomical regions. 
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Figure legends 

Figure 1 Procedure for reconstructing each CBCT. The original CBCT images were projected 

by the Radon transform, and 480 imaginary projection data were created. Three types of 

CBCT images were reconstructed from the projection data. The CBCT images reconstructed 

from 480, 240, and 120 projection data were defined as CBCT100%, CBCT50%, and CBCT25%, 

respectively. 

 

Figure 2 U-net convolutional neural network architecture. 

 

Figure 3 Setting of ROIs for prostate and bone. The yellow circles placed on the axial view 

were selected as ROIProstate and ROIBone for the MAE calculation. 

 

Figure 4 Workflow to evaluate the HU deviations and image quality for each CBCT image. 

PSNR, SSIM, and MAE of CBCTs were calculated in comparison with the values of 

CBCT100%. Average values of PSNR and SSIM over 120 slices were evaluated for each 

patient. 

 

Figure 5 Comparison of CBCT100% and original CBCT for one case. (a) CBCT100%, (b) 

original CBCT, and (c) voxel value histogram of CBCT100% and original CBCT for all slices 

(120 slices) in body region. 

 

Figure 6 One case of learning curves on the training data (30 patients) and test data (1 

patient). 

 

Figure 7 Subtraction images between each CBCT image and reference image at two different 

slice positions (patient number 16).  
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Figure 8 Histogram of absolute error between each CBCT image and CBCT100% in the (a) 

prostate and (b) femoral head regions (patient number 8). 

 

Figure 9 SSIM and PSNR of CBCT25% + DCNN of patient number 27 using the model trained 

by 5, 10, 14, and 30 patients. 

 



Table 1 List of the relevant parameters used during scanning with the XVI 

Protocol Pelvis 

kV collimator M20 

kVp 120 

(mA, ms/frame) (40, 40) 

Acquisition gantry angle 183 deg. to 179 deg.  

Acquisition time  ~120 s 

 



 

Table 2 Quantitative analysis of the image qualities for the 36 cases. 

Mean ± SD 
MAE 

SSIM PSNR 
ROIBone ROIProstate 

CBCT 25% 26.7±4.73 22.6±3.56 0.94±0.02 45.3±1.13 

CBCT50% 15.2±3.31 12.6±2.78 0.98±0.01 51.6±2.03 

CBCT25%+DCNN 13.9±2.46 12.0±2.85 0.98±0.01 52.8±1.68 

 

 



   

Figure 1 Procedure for reconstructing each CBCT. The original CBCT images were projected by the 

Radon transform, and 480 imaginary projection data were created. Three types of CBCT images were 

reconstructed from the projection data. The CBCT images reconstructed from 480, 240, and 120 

projection data were defined as CBCT100%, CBCT50%, and CBCT25%, respectively. 

 

CBCT100%CBCT25% CBCT50%

120 projections 240 projections 480 projections

Original  CBCT

Reconstruction using scikit-image image processing library
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Figure 2 U-net convolutional neural network architecture.  



 

Figure 3 Setting of ROIs for prostate and bone. The yellow circles placed on the axial view were 

selected as ROIProstate and ROIBone for the MAE calculation. 
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Figure 4 Workflow to evaluate the HU deviations and image quality for each CBCT image. PSNR, 

SSIM, and MAE of CBCTs were calculated in comparison with the values of CBCT100%. Average values 

of PSNR and SSIM over 120 slices were evaluated for each patient. 
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Figure 5 Comparison of CBCT100% and original CBCT for one case. (a) CBCT100%, (b)original CBCT, and 

(c) voxel value histogram of CBCT100% and original CBCT for all slices (120 slices) in body region. 



 

Figure 6 One case of learning curves on the training data (30 patients) and test (1 patient). 
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 Figure 7 Subtraction images between each CBCT image and reference image at two different 

slice positions (patient number 16).  
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Figure 8 Histogram of absolute error between each CBCT image and CBCT100% in the (a) prostate and 

(b) femoral head regions (patient number 8). 
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 Figure 9 SSIM and PSNR of CBCT25% + DCNN of patient number 27 using the model trained by 5, 10, 14, 

and 30 patients. 

51.0

51.5

52.0

52.5

53.0

53.5

54.0

54.5

55.0

5 10 14 30
0.983

0.984

0.985

0.986

0.987

0.988

0.989

0.990

0.991

5 10 14 30

SS
IM

PS
N

R(
dB

)

Number of samples used for the training  Number of samples used for the training  


