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Abstract

Although co-trimoxazole (trimethoprim-sulphamethoxazole) is an
effective drug for prophylaxis against and treatment of
Pneumocystis pneumonia, patients often experience adverse
events with this combination, even at prophylactic doses. With
the aim being to achieve individual optimization of co-trimoxazole
therapy in patients with systemic lupus erythematosus (SLE), we
investigated genetic polymorphisms in the NAT2 gene (which
encodes the metabolizing enzyme of sulphamethoxazole). Of
166 patients with SLE, 54 patients who were hospitalized and
who received prophylactic doses of co-trimoxazole were
included in the cohort study. Adverse events occurred in 18
patients; only two experienced severe adverse events that lead
to discontinuation of the drug. These two patients and three
additional ones with severe adverse events (from other
institutions) were added to form a cohort sample and were

analyzed in a case-control study. Genotype was determined
using TaqMan methods, and haplotype was inferred using the
maximum-likelihood method. In the cohort study, adverse events
occurred more frequently in those without the NAT2*4
haplotype (5/7 [71.4%]) than in those with at least one NAT2*4
haplotype (13/47 [27.7%]; P = 0.034; relative risk = 2.58, 95%
confidence interval = 1.34–4.99). In the case-control study the
proportion of patients without NAT2*4 was significantly higher
among those with severe adverse events (3/5 [60%]) than those
without severe adverse events (6/52 [11.5%]; P = 0.024; odds
ratio = 11.5, 95% confidence interval = 1.59–73.39). We
conclude that lack of NAT2*4 haplotype is associated with
adverse events with co-trimoxazole in Japanese patients with
SLE.

Introduction
Co-trimoxazole (trimethoprim-sulphamethoxazole) is an effec-
tive drug in the prevention and treatment of Pneumocystis
pneumonia [1,2], a life-threatening condition that mainly
occurs in immunodeficient patients. Usage of the drug was
recently extended to patients with connective tissue disease,
including systemic lupus erythematosus (SLE) [3]. Although
co-trimoxazole was confirmed to have prophylactic effect

against Pneumocystis pneumonia in SLE patients, it often
causes adverse events, even at prophylactic doses. Adverse
events include life-threatening conditions such as toxic epider-
mal necrolysis (TEN) and Stevens-Johnson syndrome (SJS),
hepatotoxicity, haematological toxicity and gastrointestinal
manifestations [4].
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ALT = alanine aminotransferase; AST = aspartate aminotransferase; GST = glutathione S-transferase; NAT2 = N-acetyltransferase 2; PM/DM = pol-
ymyositis/dermatomyositis; SLE = systemic lupus erythematosus; SNP = single nucleotide polymorphism; SJS = Stevens-Johnson syndrome; TEN 
= toxic epidermal necrolysis.
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Of the two chemical components of co-trimoxazole, sulpham-
ethoxazole is thought to be responsible for most cases of
hypersensitivity [5]. The major metabolic pathway for sulpham-
ethoxazole is catalyzed by N-acetylation by N-acetyltrans-
ferase 2 (NAT2). In the pathogenesis of hypersensitivity, the
formation of hydroxylamine through oxidization by cytochrome
P450 and its subsequent autooxidation to the nitroso metabo-
lite have been implicated, although these are minor metabolic
pathways [6-9]. These toxic metabolites are also detoxified by
phase II enzymes and exhibit acetylation by NAT2, glucuroni-
dation by uridine 5'-diphophate-glucronosyltransferase, sul-
phate conjugation by sulphotransferase, and conjugation with
glutathione by glutathione S-transferase (GST) [7,10]. Among
those metabolizing enzymes, NAT2 is a key enzyme because
it catabolizes sulphamethoxazole and toxic metabolites, and
may prevent the formation of hydroxylamine.

The NAT2 gene has at least 13 single nucleotide polymor-
phisms (SNPs) in the coding exon, and 29 NAT2 alleles (hap-
lotypes) have been described in human populations, as shown
in the NAT2 nomenclature Web site [11-13]. In addition to one
wild-type haplotype (NAT2*4), the human NAT2 gene has four
representative clusters of haplotypes that possess specific
nucleotide substitutions at positions 341, 590, 857 and 191.
These clusters are called NAT2*5, NAT2*6, NAT2*7 and
NAT2*14, respectively. Previous studies have shown that the
members of those clusters are responsible for the slow
acetylator phenotype [14,15], which is conveniently deter-
mined by examining the concentration of caffeine in urine [16-
18]. Individuals who are homozygous for mutant-type haplo-
types exhibit the slow acetylator phenotype, whereas those
who carry at least one wild-type haplotype exhibit the fast
acetylator phenotype.

In the present study we examined the association between
genetic polymorphisms in the NAT2 gene and adverse events
with co-trimoxazole in patients with SLE.

Materials and methods
Patients and control individuals
The present study was approved by the Genome Ethics Com-
mittee of Tokyo Women's Medical University. A total of 166
patients with SLE were enrolled after they had given informed
consent. Of these, 54 were admitted to our hospital between
January 2001 and May 2006, and received co-trimoxazole
(400 mg sulphamethoxazole and 80 mg trimethoprim) each
day for prophylaxis against Pneumocystis pneumonia while
they were immunosuppressed (CD4+ cell count <200/mm3).
All patients with SLE fulfilled the 1997 American College of
Rheumatology revised criteria for the classification of SLE
[19,20]. The data from these 54 patients were analyzed, and
the patients were divided into two groups: those with adverse
events (n = 18) and those without adverse events (n = 36).
Among the 18 patients with adverse events, only two experi-

enced severe events that lead to the discontinuation of co-tri-
moxazole treatment.

We collected samples from three additional patients at two
other institutions who experienced severe adverse events. The
five patients with severe adverse events (two from our institu-
tion and three from the other institutions) were combined to
constitute a case group in a case-control study.

We wished to examine whether the genotypes or haplotypes
of the NAT2 gene in SLE patients are different from those in
patients with other connective tissue diseases or those from
control subject individuals. We therefore obtained genomic
DNA from 39 patients with polymyositis/dermatomyositis (PM/
DM) who had fulfilled the criteria proposed by Bohan and
Peter [21] and from 195 healthy donors (all gave informed
consent). All patients and control individuals included in this
study were Japanese.

Assessment of adverse events with co-trimoxazole
Liver dysfunction was considered to be present when serum
aspartate aminotransferase (AST) or alanine aminotransferase
(ALT) levels were higher than twice the upper limit of the nor-
mal range. The patients and control individuals had no history
of alcohol abuse and were negative for hepatitis B surface
antigen and anti-hepatitis C virus antibody. Thrombocytopenia
was defined as a platelet count below 100,000/μl. Rashes
were variable in severity: TEN was diagnosed when there was
widespread epidermal necrolysis with the appearance of
scalding (>30% of the body surface area), and epidermal
necrolysis that involved less than 10% of the body was diag-
nosed as SJS.

DNA isolation
On admission to the hospital peripheral blood (10 ml) was
drawn from each patient into tubes containing EDTA as an
anticoagulant. A standard phenol-chloroform extraction proce-
dure was used to extract genomic DNA from the blood
samples.

Genotyping at the single nucleotide polymorphisms in 
the NAT2 gene and inference of haplotype combinations
The NAT2 gene has at least 13 SNPs. Genotyping at four
SNP sites enabled us to infer the haplotypes and diplotype
configurations for the majority of the Japanese individuals. The
four SNP sites included a C to T substitution at nucleotide
position 282 (rs1041983), a C to T substitution at nucleotide
position 481 (rs1799929), a G to A substitution at nucleotide
position 590 (rs1799930) and a G to A substitution at nucle-
otide position 857 (rs1799931). These four SNPs yield six
haplotypes in the NAT2 gene in the Japanese population,
namely NAT2*4, NAT2*5B, NAT2*5E, NAT2*6A, NAT2*7B
and NAT2*13. Of these, NAT2*4 is the wild-type haplotype;
the remaining haplotypes are mutant types. In the present
study, individuals who were homozygous for mutant-type
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haplotypes were tentatively designated slow acetylators;
those who carried at least one wild-type haplotype were des-
ignated fast acetylators. A predeveloped TaqMan kit (Applied
Biosystems, Foster City, CA, USA) that contained a set of for-
ward and reverse primers and fluorescent-labelled probes that
hybridize either wild-type or mutant-type sequences was used
to determine genotypes at the four SNP sites by allelic dis-
crimination chemistry. Genotypes were determined at four
SNP loci in the NAT2 gene. From the obtained genotype data,
we inferred the diplotype configuration for each individual,
using PENHAPLO software [22,23]. This program was
designed to infer haplotypes for each individual with using the
maximum-likelihood method based on the expectation maximi-
zation algorithm, assuming Hardy-Weinberg equilibrium for
the population [24]. This method infers not only the frequen-
cies of haplotypes in the population but also the distribution of
diplotype configurations in each individual.

Statistical analysis
Fisher's exact test was used to evaluate differences in the fre-
quencies of the diplotype configurations corresponding to the
slow acetylators (those without NAT2*4) between the two
groups. Differences were considered to be statistically signifi-
cant at P < 0.05. Relative risks were determined in the cohort
study and odds ratios were calculated in the case-control
study, with 95% confidence intervals. SAS software (SAS
Institute, Cary, NC, USA) was used to compare the differ-
ences in ALT levels between two groups using the nonpara-
metric Mann-Whitney U-test.

Results
Haplotypes and diplotype configurations at the NAT2 
gene
Genotyping of the four SNP sites at the NAT2 gene was suf-
ficient for inferrence of haplotypes or diplotype configurations,
using the PENHAPLO program, and the diplotype configura-
tion was concentrated on a single haplotype combination for
each individual using this program. Table 1 shows numbers
and frequencies of diplotype configurations at the NAT2 gene
in 166 patients with SLE, 39 patients with PM/DM, and 195
healthy individuals. The percentages of fast acetylators were
89.2%, 89.7% and 91.8% among patients with SLE, patients
with PM/DM and healthy individuals, respectively (correspond-
ing percentages of slow acetylators were 10.8%, 10.3% and
8.2%). The percentages of fast and slow acetylators were not
statistically different between the three groups (P = 0.66 by
Fisher's exact test).

Incidence of adverse events with co-trimoxazole
The incidence of adverse events was investigated prospec-
tively in 54 patients with SLE who were receiving prophylactic
doses of co-trimoxazole. Adverse events occurred in 18
(33.3%) of the 54 patients. Of the 18 patients with SLE who
experienced adverse events, two had dual adverse events
(yielding a total of 20 adverse events). Of the 20 adverse
events, 14 (70%) were liver dysfunction, five (25%) were
thrombocytopenia and one (5%) was skin rash. None of fever,
gastrointestinal symptom, headache, anaemia, or leucopaenia
was observed in the study group.

Table 1

Numbers and frequencies of the diplotype configurations at the NAT2 gene among patients with SLE, those with PM/DM and 
healthy individuals

Diplotype configuration Acetylator phenotype SLE (n = 166) PM/DM (n = 39) Healthy individuals (n = 195)

NAT2*4/*4 Fast 84 14 103

NAT2*4/*5B Fast 2 0 0

NAT2*4/*5E Fast 1 0 0

NAT2*4/*6A Fast 43 13 51

NAT2*4/*7B Fast 17 8 24

NAT2*4/*13 Fast 1 0 1

Fast acetylators 148 (89.2) 35 (89.7) 179 (91.8)

NAT2*5B/*5B Slow 0 0 1

NAT2*5B/*6A Slow 0 0 2

NAT2*5B/*7B Slow 1 0 0

NAT2*6A/*6A Slow 5 2 6

NAT2*6A/*7B Slow 9 1 6

NAT2*7B/*7B Slow 3 1 1

Slow acetylators 18 (10.8) 4 (10.3) 16 (8.2)

Values are expressed as number (%) of patients. NAT2, N-acetyltransferase 2; PM/DM, polymyositis/dermatomyositis; SLE, systemic lupus 
erythematosus.
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Association between diplotype configurations at the 
NAT2 gene and adverse events with co-trimoxazole
The association between diplotype configurations at the
NAT2 gene and occurrence of adverse events with co-trimox-
azole in the cohort study is shown in Table 2. Five out of seven
(71.4%) slow acetylators experienced adverse events, and the
frequency was significantly higher than that among fast
acetylators (13/47 [27.7%]; P = 0.034 by Fisher's exact test;
relative risk = 2.58, 95% confidence interval = 1.34–4.99).
Frequency of immunosuppressant use did not differ between
patients who suffered adverse events with co-trimoxazole and
those who did not. Thus, concomitant medications did not
appear to influence the occurrence of adverse events of co-tri-
moxazole.

Five patients with severe adverse events were analyzed in a
case-control study. Severe adverse events included TEN, SJS,
severe liver dysfunction (ALT >300 IU/ml) and severe throm-
bocytopenia (platelets <50,000/μl), and are summarized in

Table 3. As shown in Table 4, three of the five patients with
severe adverse events were slow acetylators, and the fre-
quency was compared with that among 52 SLE patients who
did not experience severe adverse events (including 16
patients with mild adverse events and 36 patients with no
adverse events). The poportion of slow acetylators was signif-
icantly higher among the patients with severe adverse events
than in those without (60% versus 11.5%; P = 0.024 by
Fisher's exact test, odds ratio = 11.5, 95% confidence interval
= 1.59–73.39).

Influence of diplotype configurations at the NAT2 gene 
on serum markers of liver dysfunction
Liver dysfunction as an adverse event can be statistically eval-
uated using serum markers (ALT and AST). The mean (±
standard deviation) interval between the initiation of co-trimox-
azole treatment and first observation of liver dysfunction was
15.8 ± 5.2 days. Figure 1 shows serum ALT levels on day 14

Table 2

Association between diplotype configurations at the NAT2 gene and adverse events with co-trimoxazole, analyzed in the cohort 
study

Diplotype configuration Acetylator phenotype With adverse events (n = 18) Without adverse events (n = 36) Total

NAT2*4/*4 Fast 6 15 21

NAT2*4/*5B Fast 0 2 2

NAT2*4/*5E Fast 0 1 1

NAT2*4/*6A Fast 5 12 17

NAT2*4/*7B Fast 2 4 6

Fast acetylators 13 (27.7) 34 (72.3) 47

NAT2*6A/*6A Slow 1 0 1

NAT2*6A/*7B Slow 3 1 4

NAT2*7B/*7B Slow 1 1 2

Slow acetylators 5 (71.4)a 2 (28.6) 7

Values are expressed as number (%) of patients. The frequency of adverse events was compared between fast acetylators (n = 47) and slow 
acetylators (n = 7). aP = 0.034 versus fast acetylators (by Fisher's exact test); relative risk = 2.58, 95% confidence interval = 1.34–4.99. NAT2, 
N-acetyltransferase 2.

Table 3

Clinical characteristics and diplotype configurations at the NAT2 gene in five patients who experienced severe adverse events with 
co-trimoxazole

Patient number Age (years)/sex Diplotype configuration Acetylator phenotype Adverse events

1 52/female NAT2*6A/*6A Slow TEN, liver dysfunction

2 56/female NAT2*5B/*7B Slow SJS, liver dysfunction

3 43/female NAT2*6A/*7B Slow Thrombocytopenia, liver 
dysfunction

4 48/female NAT2*4/*7B Fast Thrombocytopenia

5 46/female NAT2*4/*6A Fast SJS, liver dysfunction

NAT2, N-acetyltransferase 2; SJS, Stevens-Johnson syndrome; TEN, toxic epidermal necrolysis.
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after initiation of treatment with co-trimoxazole. Levels of
serum ALT were significantly higher in slow acetylators than in
fast acetylators (median: 82.0 ± 45.3 IU/ml versus 30.0 ±
47.0 IU/ml; P = 0.0096 by Mann-Whitney U-test). Serum AST
levels immediately after the administration of co-trimoxazole
were not significantly different between fast and slow acetyla-
tors (median: 30.0 ± 21.5 IU/ml versus 24.0 ± 31.0 IU/ml; P
= 0.088 by Mann-Whitney U-test). In both groups, baseline
levels of serum AST and ALT before administration of co-tri-
moxazole were within normal limits.

Discussion
The present study demonstrates that, among patients with
SLE, slow acetylators (as inferred based on genotype data in
the NAT2 gene) exhibit a greater frequency of various adverse
events with co-trimoxazole than do fast acetylators. Ohno and
coworkers [14] first reported an association between genetic
polymorphisms at the NAT2 gene and the occurrence of
adverse events with sulphonamides. Since then severe
adverse events with sulfasalazine, another compound that is
catabolized by NAT2, were also reported to be associated

with absence of the wild-type allele (NAT2*4) in the NAT2
gene [15,25]. There have been conflicting reports regarding
the association between adverse events with co-trimoxazole
and NAT2 genotype, with findings apparently correlating with
the underlying disease process. For instance, in the setting of
HIV infection many investigators were unable to demonstrate
such an association, but some reports have shown a positive
association in patients without HIV infection [26]. Therefore,
differences in background illness may account for the fact that
a positive association was observed in the present study (in
patients with SLE) and negative associations were observed
in other reports in which the disease was HIV related. An alter-
native explanation is that there are differences in composition
of NAT2 haplotypes between ethnic groups (as discussed
below).

In the present study we found that slow acetylators at the
NAT2 gene, among the patients with SLE, were more likely to
develop adverse events with co-trimoxazole than were fast
acetylators in the cohort study (relative risk = 2.58). In the
case-control study, we found that the proportion of slow
acetylators was higher among patients with severe adverse
events than in those without (60% versus 11.5%; odds ratio =
11.5), although we could not find statistically significant differ-
ences between the patients with severe adverse events and
16 patients with mild adverse events (60% versus 25%; P =
0.28). We emphasize that severe adverse events, including
life-threatening ones, were associated with NAT2 polymor-
phisms.

The most frequent adverse event with co-trimoxazole in the
cohort study group was liver dysfunction (70%), followed by
thrombocytopenia (25%) and rash (5%). The types of adverse
events are slightly different from those previously reported for
co-trimoxazole. Karpman and Kurzrock [27] reviewed the
adverse events associated with co-trimoxazole use in children
on full-dose therapy, and indicated that cutaneous lesions
were the most common hypersensitivity reactions to co-trimox-
azole, accounting for 70% of all adverse events. Other hyper-
sensitivity effects, including fever and haematological toxicity,
were also frequent. Liver dysfunction was less common. With
sulphonamides, however, liver dysfunction is a well docu-
mented common adverse event [28]. We speculate that the
incidence of liver dysfunction in patients receiving co-trimoxa-
zole might have been underestimated in the study by Karpman

Table 4

Association between diplotype configurations at the NAT2 gene and severe adverse events with co-trimoxazole, analyzed in the 
case-control study

Diplotype configuration With severe adverse events (n = 5) Without severe adverse events (n = 52)

Slow acetylator (without NAT2*4) 3 (60)a 6 (11.5)

Fast acetylator (with NAT2*4) 2 (40) 46 (88.5)

Values are expressed as number (%) of patients. The frequency of slow acetylators was compared between five patients who experienced severe 
adverse events and 52 patients without severe adverse events. aP = 0.024 by Fisher's exact test; odds ratio = 11.5, 95% confidence interval = 
1.59–73.39. NAT2, N-acetyltransferase 2.

Figure 1

Levels of serum ALT in fast acetylators and slow acetylatorsLevels of serum ALT in fast acetylators and slow acetylators. There 
were 47 fast acetylators and seven slow acetylators in the cohort. Lev-
els of serum ALT in patients with systemic lupus erythematosus were 
measured 14 day after initiation of co-trimoxazole. Serum ALT levels in 
slow acetylators were significantly higher than in fast acetylators 
(median: 82.0 ± 45.3 IU/ml versus 30.0 ± 47.0 IU/ml; *P = 0.0096, by 
Mann-Whitney U-test). ALT, alanine aminotransferase.
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and Kurzrock [27]. All patients in the present study were hos-
pitalized and monitored for asymptomatic liver dysfunction
using routine biochemical tests. Among the 54 patients with
SLE who were enrolled in the cohort study, slow acetylators
exhibited significantly higher levels of serum ALT after admin-
istration of co-trimoxazole than did fast acetylators. This sug-
gests that NAT2 genotype affected levels of serum ALT. On
the other hand, the low incidence of cutaneous lesions in the
present cohort study might have been the result of preceding
immunosuppressive therapies, latently preventing develop-
ment of cutaneous lesions.

Sulphonamides are the compounds most associated with
development of TEN, and the mechanism of skin necrolysis is
reported to be through cytotoxic lymphocyte-mediated path-
ways and clonally expanded CD8+ T cells [29]. Although TEN
and SJS induced by co-trimoxazole is rare, it is a major prob-
lem because severe skin disease such as TEN and SJS can
occur even with prophylactic doses of co-trimoxazole in SLE.
Indeed, some patients in the case-control study exhibited
hypersensitivity reactions, including TEN and SJS, which are
typical and severe allergic reactions to the drug. Interestingly,
a large proportion of these patients were slow acetylators.
Thus, polymorphisms at the NAT2 gene may account even for
allergic reactions to co-trimoxazole. These findings are con-
sistent with a previous report [15] demonstrating that allergic
reactions such as rashes and fever were more frequent in slow
acetylators (as inferred by the maximum-likelihood method)
among Japanese patients with rheumatoid arthritis treated
with sulphasalazine. The greater frequency of adverse events
with co-trimoxazole in slow acetylators might be accounted for
by delayed drug clearance, resulting in sustained high levels of
serum sulphamethoxazole, which is likely to lead to increased
formation of hydroxylamine or nitroso-sulphamethoxazole.
These toxic metabolites and sulphamethoxazole might act as
cytotoxic, genotoxic, or immunogenic agents, and hence
induce adverse reactions.

Haplotype frequencies at the NAT2 gene vary between ethnic
groups. The percentage of slow acetylators was reported to
be 56% to 74% among Caucasians [30], but it was only 8.2%
in our study. The percentage of slow acetylators in our study
is similar to proportions reported previously in the Japanese
population [15]. Furthermore, the compositions of mutant hap-
lotypes are quite different between Caucasian and Japanese
individuals. In the former, the most frequent mutant haplotype
is the NAT2*5 cluster (45%), followed by the NAT2*6 cluster
(28%) and the NAT2*7 cluster (2%) [31]. In the Japanese
population, however, NAT2*6A is the most frequent (20%),
followed by NAT2*7B (13%), and the NAT2*5 cluster is very
rare (0.01%). Thus, major components of the NAT2 mutant
haplotype in Caucasian individuals are NAT2*5B and
NAT2*6A; in the Japanese population, NAT2*6A and
NAT2*7B are the major components. Each haplotype con-
tains specific nucleotide substitutions: T341C and A803G for

NAT2*5B, G590A for NAT2*6A, and G857A for NAT2*7B.
All of these substitutions cause amino acid changes. It is curi-
ous, however, that the severe adverse events caused by sul-
fasalazine, associated with NAT2 variations, have been
reported exclusively from Japan, although the frequency of
slow acetylators is much higher among Caucasian than Japa-
nese populations [15,25]. The quiet different composition of
mutant haplotypes between Caucasian and Japanese
populations may account for the difference in adverse events
relative to NAT2 gene haplotype.

During metabolic detoxification of sulphamethoxazole, phase II
enzymes other than NAT2 also play a role. GST can detoxify
nitroso-sulphamethoxazole by reduction back to hydroxy-
lamine. It catalyzes conjugation of electrophiles with glutath-
ione, thereby inactivating those often cytotoxic or genotoxic
substances [32]. Of several GST isozymes, the μ-class
enzyme (GSTM), the θ-class enzyme (GSTT) and the π-class
enzyme (GSTP) are polymorphic [33-36]. The genetic poly-
morphisms at the GSTM1 and GSTT1 genes were reported to
be deletion of nucleotides (referred to as null GSTM1 and null
GSTT1 alleles), which have been associated with susceptibil-
ity to cancer [37,38]. We also investigated the involvement of
genetic polymorphisms of the GSTT1 and GSTM1 genes in
the occurrence of adverse events with co-trimoxazole (data
not shown). Nevertheless, none of the GST gene polymor-
phisms were associated with adverse events, a finding that is
consistent with previous data [30].

Conclusion
We found that Japanese patients with SLE who do not har-
bour the NAT2*4 haplotype develop adverse events with co-
trimoxazole more frequently than patients with at least one
NAT2*4 haplotype. Knowledge on diplotype configurations for
the NAT2 gene may lead to improveed efficacy and safety of
co-trimoxazole in patients with SLE.
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