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Abstract

Background: While many branches of natural science have embraced group theory
reaping enormous advantages for their respective fields, clinical medicine lacks to
date such applications. Here we intend to explain a prototypal model based on the
postulates of groups that could have potential in categorizing clinical states.

Method: As an example, we begin by modifying the original ‘Brief Psychiatric Rating
Scale’ (BPRS), the most frequently used standards for evaluating the psychopathology of
patients with schizophrenia. We consider a presumptively idealized (virtually
standardized) BPRS (denoted BPRS-I) with assessments ranging from ‘0’ to ‘6’ to simplify
our discussion. Next, we introduce the modulo group Z7 containing elements {0,1,2,. . .,6}
defined by composition rule, ‘modulo 7 addition’, denoted by *. Each element
corresponds to a score resulting from grading a symptom under the BPRS-I assessment.
By grading all symptoms associated with the illness, a Cartesian product, denoted Aj,
constitutes a summary of a patient assessment. By considering operations denoted A
(j!k) that change state Aj into state Ak, a group M (that itself contains Aj and Ak as
elements) is also considered. Furthermore, composition of these operations obey
modulo 7 arithmetic (i.e., addition, multiplication, and division). We demonstrate the
application with a simple example in the form of a series of states (A4 =A1*A(1!2)*A(2!3)

*A(3!4)) to illustrate this result.

Results: The psychiatric disease states are defined as 18-fold Cartesian products of Z7, i.
e., Z7

×18 = Z7×. . .×Z7 (18 times). We can construct set G� {a(m)i| m=1,2,3,. . .(the patient’s
history of the i-th symptom)} and M� {Am | Am 2 Z7

×18 (the set of all possible
assessments of a patient)} simplistically, at least, in terms of modulo 7 addition that
satisfies the group postulates.

Conclusions: Despite the large limitations of our methodology, there are grounds not
only within psychiatry but also within other medical fields to consider more generalized
notions based on groups (if not rings and fields). These might enable through some
graduated expression a systematization of medical states and of medical procedures in a
manner more aligned with other branches of natural science.

Keywords: Group theory, Modulo operation, Severity assessment, BPRS, Notation
Background
Group theory is a branch of abstract algebra developed to classify and study abstract

concepts involving symmetry [1-3]. In particular, in the 20th century, it formed one of

the cornerstones of mathematical methods in physics where group representation the-

ory provided the setting to quantum fields (i.e., Poincare group [2,4]) and special
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relativity (i.e., Lorentz group [5-7]). In general, when group theory is used in physics, it

is usually in the role of describing geometrical or dynamical symmetries of phenomena

under consideration. For example, all the equations of classical Newtonian mechanics

are invariant under Galilean transformations. In solid-state physics, the symmetry

groups of crystals play a central role, and parts of chemistry concerning molecular sys-

tems can be cast in terms of group-theoretic expressions [3]. Cosmological, stellar, and

atomic particle abstractions can also be expressed quite powerfully in terms of group

theory [6,8]. From social anthropology, ‘Les structures élémentaires de la parenté’ was

written by C. Lévi-Strauss in 1949 based on André Weil’s study, ‘Algebraic Study of Cer-

tain Types of Marriage (Murngin System)’, that initiated a series of articles on the math-

ematical treatment of marriage rules [9]. We emphasize though that we are not

bringing structuralism ideas into clinical psychiatry in applying our group-theoretic ap-

proach. Researchers in the field of molecular biology understand the cell cycle and gen-

etic activities from the standpoint of group operations [10]. Underlying group theory’s

usefulness in the various branches of natural science is the notion that the group itself

serves as the configuration space for the system under consideration.

The medical field embraces many branches of natural science (physics and chem-

istry) as well as others such as evolutionism, public health, (molecular) biology,

genetics, biological engineering, and some parts of mathematics. However, medicine

is not the mere combination of these branches. Also, over time, delineating medi-

cine from these is becoming harder. To our knowledge, medicine unfortunately has

not been systematized enough in general, and has not attained a level of sophisti-

cation that links it directly with other fields of natural science. As is well known,

the present structure and/or schematization of medicine is too complex to treat ef-

fectually in a rational manner. The descriptive nature of medicine depends on clas-

sifying medical states of patients, and the results of treatments might be

sufficiently non-optimal to be unable to work out a reasonably scientific system.

That might yield more than a little degree of futility. In our view, one reason for

that is the lack in medical science of a group-theory systematics, in particular an

effective notational style. Group theory provides a framework to abstract simple

models from real-world systems, and to analyze those models in designing new

systems and in making new predictions. For that reason, we believe that group the-

ory might be crucial, and upgrading medical procedures and refine its procedural

style, particularly in terms of description and manipulation, even partially, is neces-

sary to refine the medical field for the future. We envisage that it would reduce

the magnitude of data and/or handling requirements of patient medical records.

At any rate, by some means or other, we need to formulate a model that would be

based on some group-theorized rule, even if it is incomplete and insufficient to meet

our desires at this early stage.

Using as an example from clinical medicine a psychiatric evaluation scale that scores

disease severity, we describe below a prototypal model based on group theory ideas that

could provide an operational structure and play an important role in treatment pro-

grams. With such a model, we hope to infer its potential to categorize clinical states. In

a similar manner, we believe that this technique could also apply to cancer stages, de-

scribing the severity based on the extent of the tumor and spread within the body. In

addition, we demonstrate the application with a simple example that might be useful in
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imagining a potentially descriptive style in medicine for the future. Combined with the

use of personal computers and other electronic tools, we see a move towards a future

of optimally systemized medicine.

The main idea behind our method has been considerably influenced by Naganuma’s

“Theory of operation matrix” proposal [11], although the core concept has been published

only in Japanese at present. There, wide-ranging types of physical quantities are combined

to form an approximately tautologized vector ‘x’ along with various information. These in-

clude limitations associated with a certain model that are able to be displayed by a square

matrix (Operation Matrix) [A] that acts at ‘x’ within a specified time interval either as

‘x(t +Δt) = [A]x(t)’ or ‘x(t + n�Δt) = [An]x(t)’ where t is the time and Δt a minimal time

interval. It seems to us that our model is a specific example of Naganuma’s model.
Model assumptions
To illustrate our concept in a more simplified style, we focus on schizophrenia and its

psychiatric evaluation scale as an example from clinical medicine. By making use of

these materials, we intend to develop our discussion in group-theorizing disease states

within clinical medicine generally.
}1. Group-theory model to classify psychiatric disease states via a presumptively

idealized ‘Brief Psychiatric Rating Scale’

Conventionally, the ‘Brief Psychiatric Rating Scale’ (BPRS) [12] is the more frequently

used standard for evaluating the psychopathology of patients with schizophrenia, not

only in clinical practice but also in clinical research. However, although it applies to

every psychiatric state, the scale also includes non-disease states and hence applies to

all patients whether suffering from schizophrenia or not. The BPRS provides an assess-

ment of 18 symptoms (somatic concern, anxiety, emotional withdrawal, conceptual

disorganization, guilt, tension, bizarre behavior, grandiosity, depressed mood, hostility,

suspiciousness, hallucinations, motor retardation, uncooperativeness, unusual thought

content, blunted affect, excitement and disorientation). An assessment is clearly defined

as scores for all symptoms have the same classification: (1 (not present), 2 (very mild),

3 (mild), 4 (moderate), 5 (moderately severe), 6 (sever) and 7 (extremely severe), with

‘0’ meaning “not assessed”). Psychiatrists assess their patients for symptoms associated

with schizophrenia, rate the severities of each symptom, ordinarily from 1 to 7, and

sum to obtain a total score from 18 to 126. Ideally, the BPRS score indicates the sever-

ity of the psychiatric disease state, although this assumption has weak theoretical basis.

Scoring across symptoms might not be equally standardized; the BPRS is to date not

determined in a sufficiently reasonable and rigorous way.

To simplify discussions, we next consider a presumptively idealized (virtually standar-

dized) BPRS, called “BPRS-I”, that still includes all 18 symptoms. Scoring is the same

for all symptoms but with modified range (0 for not present to 6 for extremely severe;

an average score would be 3). Of course, assessment assumes ideal objectivity. Each

symptom is assessed against a golden standard with perfect linearity of scale, and hav-

ing the necessary and sufficient grades; although this assumption also seems to have

only a weak theoretical premise. That aside, we believe that this kind of simplification

is unavoidable. The necessary trade-off sacrifices rigor to some extent in exchange for



Sawamura et al. Theoretical Biology and Medical Modelling 2012, 9:28 Page 4 of 15
http://www.tbiomed.com/content/9/1/28
constructing our theoretical model. Moreover, all symptoms are assumed to be graded

over a 7-point scale to further simply discussions.

We now turn attention to describing the mathematical aspects that will help to

understand content discussed later. In general, we can divide any number ‘a’ by ‘7’ and

find its remainder, i.e., one of the integers in set Z7�{0, 1, 2, 3, 4, 5, 6}. This is called

‘modulo 7 reduction’. Now, if we add two numbers and perform the same operation,

we get also a number with remainder in Z7. This rule for adding among integers is

called ‘modulo 7 addition’. We can also replace ‘7’ by any natural number ‘m’ and do

exactly the same thing; Zm now denotes the set {0, 1, 2, . . ., m− 1}. Any integer N can

then be mapped to Zm by dividing by ‘m’ and taking the remainder, this is called ‘mod-

ulo m reduction’, and the resulting remainder is written N mod m.

In addition, the Cartesian product of two sets X and Y, denoted ‘X × Y’, can be defined

by

X� Y ¼ x; yð Þf jx 2 X and y 2 Yg:

For example, let X ¼ a; b; c; df g and let Y ¼ 1; 2f g;
X� Y ¼ a; 1ð Þ; b; 1ð Þ; c; 1ð Þ; d; 1ð Þ; a; 2ð Þ; b; 2ð Þ; c; 2ð Þ; d; 2ð Þf g:

Hence, by using Zm as X and Y, we can define the set ‘Zm×Zm’, and a large number

of combinations of ‘Zm’s are also composable as ‘Zm×Zm× . . .×Zm’ [2].

In this article, we consider the case m= 7; that is ‘Z7’ and ‘Z7 ×Z7 × . . .×Z7’. There

are two reasons we select the natural number ‘7’; one is that ‘7’ is the grade associated

with each individual symptom in the BPRS (or BPRS-I) considered above; the other is

that ‘7’ is a prime number that is convenient in modeling our concept. A prime number

is often used to ease the computational burden of computing arithmetic operations

modulo prime numbers, as will become apparent below [13,14].

We now define modulo addition to complete the description of Zm. From numbers

‘a’ and ‘b’ that belong to Zm, we can compute a new number called a + b (mod m) that

is also in Zm, as follows: compute a + b, divide by m and let a + b mod m be the remain-

der. Since we divide by m, the remainder will always be in Zm. For instance, with m= 7,

2 + 3 (mod 7) = 5 (mod 7), 5 + 2 (mod 7) = 0 (mod 7), 4 + 5 (mod 7) = 2 (mod 7).

Modulo subtraction follows similar results as for addition because the result that ‘(a-b) mod

n=a mod n - b mod n’ is modulo addition by using the result ‘(−b) mod n=−b mod n’.

Modulo multiplication is also a possible operation that applies in our context. First,

modulo multiplication a × b (mod m) is by definition the remainder when dividing a × b

by m. For example, 4 × 5 (mod 7) = 6 (mod 7). With element ‘a’, ‘a ×Z7 (mod 7) =Z7

(mod 7)’ is true.

Modulo division by a (mod 7) is also definable (See Appendix A for details).

As a further step, we assume that the state of a certain patient evaluated by using the

BPRS-I can be described as a vector composed of scores from all 18 symptoms of the

BPRS (BPRS-I). Strictly, our subsequent discussions hold only under the tentative as-

sumption that increments associated with the assessment scale (here, the BPRS-I) are

equal, and arbitrary scores can be summed as if these were comparable, reflecting

exactly true objective values corresponding to the disease states. Again, there is no evi-

dence to support this assumption, but we believe the simplification is necessary for

similar reasons given earlier.
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Next, let ‘a(1)i2Z7’, i.e., 0≤ a(1)i ≤ 6, be a patient’s initial assessment of the i-th symptom

of schizophrenia; here i = 1,..,n, with ‘n’ a natural number taking value n = 18 corre-

sponding to the number of symptoms assessed. Using the set of ‘a(1)i’s, the complete

initial assessment ‘A1’ is written in a vector-like form:

A1 ¼ ½a 1ð Þ1ja 1ð Þ2ja 1ð Þ3j . . . ja 1ð Þij . . . ja 1ð Þn�1ja 1ð Þn�:

A1 is the n-tuple product of components with the additional meaning that these obey
modulo 7 arithmetic; to denote this, we add ‘mod 7’ at the end of the vector:

A1 ¼ ½a 1ð Þ1ja 1ð Þ2ja 1ð Þ3j . . . ja 1ð Þij . . . ja 1ð Þn�1ja 1ð Þn� mod 7ð Þ:

(See Appendix B for an example.)

The underlying structure of each Am is the 18-fold Cartesian product of Z7, i.e.,

Z7
×18 = Z7×. . .×Z7 (18 times). The model we intend to propose is based on the modulo

groups Zp (p integer) with p = 7. Note that the state ‘E’, composed of all components

with values ‘0’ (not present)’, represents a completely healthy state within the BPRS-I:

E � ½0 0j j0j . . . 0j j . . . j0j0� mod 7ð Þ:

We need to give the rules to interpret these. While also being states associated with a
patient’s assessments, the states ‘Am’ can be interpreted in two ways. One is as absolute

states that express the severity of the symptoms for a specified patient. The second is as

an operator that acts on healthy state E and produces disease state ‘Am’ (see Appendix C

for details). In this regard, we shall assume that ‘Am’ is interpreted by the former meaning

when we consider disease states of a specified patient without provisory context.

Likewise, by considering the set of all possible assessment states Am, the operation

linking the pair Aj and Ak can be expressed as a unique Am obtained under modulo 7

addition. This operation must be performed independently for each and every individ-

ual component as below:

Aj mod 7ð Þ þ Ak mod 7ð Þ ¼ Aj þ Ak
� �

mod 7ð Þ
¼ ½a jð Þ1ja jð Þ2ja jð Þ3j . . .ja jð Þij . . .ja jð Þn�1ja jð Þn� mod 7ð Þ
þ ½a kð Þ1ja kð Þ2ja kð Þ3j . . . ja kð Þij . . . ja kð Þn�1ja kð Þn� mod 7ð Þ
¼ ½a jð Þ1 þ a kð Þ1ja jð Þ2 þ a kð Þ2j . . .ja jð Þi þ a kð Þij . . .ja jð Þn�1 þ a kð Þn�1ja jð Þn þ a kð Þn� mod 7ð Þ

j; k ¼ 1; 2; 3; . . . ; positive integersð Þ ð1Þ

Based on these notions, we are able to define set G consisting of a(m)i (i-th compo-

nent of the state Am), with composition mod 7 addition:

G � a mð Þi
� ��m ¼ 1; 2; 3; . . . g the patient’s history of the i-th symptomð Þ

i ¼ 1; . . . ; n;n ¼ 18; m a natural numberð Þ
ð2Þ

Therefore, we can consider a set ‘M=Z7
×18 = Z7×. . .×Z7 (18 times)’ as the set of all possible
assessments with the following extended rule of composition based on modulo 7 addition:

M � Amf jAm2Z7
�18g ð3Þ

(m; a natural number, the number of distinct M is 718 (�W)).

Under these conditions, we confirm that, as both ‘G’ and ‘M’ are additive groups with

composition ‘modulo7 addition’ (both denoted by *), these sets satisfy the following

three conditions:

http://B
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For set G:

Іa) Associativity: for any i-th component a(j)i (2 G), the relation

ða jð Þi � a kð ÞiÞ � a lð Þi ¼ a jð Þi � ða kð Þi � a lð ÞiÞ

that is, {(a(j)i + a(k)i) + a(l)i} (mod 7) = {a(j)i + (a(k)i + a(l)i)} (mod 7)
(j, k, l = 1,2,3,. . .; positive integers), holds.
IIa) Identity: for any i-th component a(j)i (2 G), there exists an identity element

e (= 0) 2 G, such that a(j)i*e = e*a(j)i = a(j)i

that is {a(j)i + e} (mod 7) = {e + a(j)i} (mod 7) = a(j)i (mod 7), holds.
IIIa) Inverse: for any i-th component a(j)i (2 G), there exists a unique element

(a(j)i) 2 G, such that a(j)i*(a(j)i) = (a(j)i)* a(j)i = e (= 0)
that is, {a(j)i + (a(j)i)} (mod 7) = {(a(j)i) + a(j)i} (mod 7) = e (mod 7)

for each individual component. By choosing “(a(j)i) = 7- a(j)i (mod 7)”

(in this regard 7 (mod 7) = 0 (mod 7)), the above relation would be satisfied.
Therefore, set G=(Z7,*) satisfies the group postulates and has order 7 [1,2]. Likewise for

set M; because set M is a Cartesian product of set G, M also satisfies the group postulates

(Details given in Appendix D). Therefore, as M= (Z7
×18,*), the order of M is 718 (=W).

However, because Zp (p integer) satisfies the group postulates and, consequently, G

and M are N- and n-tuple Cartesian product groups, respectively, these must also sat-

isfy the group postulates. Indeed, all Zp groups are Abelian, meaning ‘a*b = b*a’ [1,2].

The above results depend upon modulo addition being performed independently for

each component.

We can now describe how we can interpret the change in state between two states,

‘Aj !Ak’ (mod 7). By defining the difference ‘A(j!k) (mod 7) =Ak (mod 7)- Aj (mod 7)

= {Ak - Aj} (mod 7)’, which expresses the direct change between the two states of illness,

Ak can then be expressed using ‘*’ as follows:

Aj � Aðj!kÞ ¼ Aj mod 7ð Þ þ Aðj!kÞ mod 7ð Þ ¼ Aj þ Aðj!kÞ
� �

mod 7ð Þ ¼ Ak mod 7ð Þ: ð4Þ

In other words, the operation A(j!k) (mod 7) acting on the state Aj (mod 7) produces
state Ak (mod 7) (see Appendix E for further description; a concrete example is also

given in Appendix F).

For these reasons, we are able in the above to perform additive operations as modulo

7 addition and we can treat the states described via the vector-like expressions (Carte-

sian products) using the presumptively idealized BPRS (BPRS-I) within a group theory

context. Although the practical implications of this model have yet to be explored, we

believe we are able to extend and make efficient use of the idea in more generalized

medical settings.

According to these discussions, the states Aj classify the psychiatric states of patients

within the BPRS-I. We interpret Aj
-1 (the inverse element of Aj) as meaning the ideally

desirable patient recovery that includes natural changes over the course of time as well

as treatments themselves that the schizophrenic patients (or others) need to undergo.

Operationally, ‘Aj*(Aj)
-1 = E (= A0)’ returning the patient to a completely healthy state

accomplished by operator (Aj)
-1 =A(j!0) when acting on Aj.
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}2. Notational development of disease states from ‘group’ to ‘ring’ or ‘field’ via modulo

multiplication and division

As illustrated above, multiplication and division with respect to ‘Aj’ is definable (A dem-

onstration is presented in Appendix G). Then, modulo 7 multiplication can be defined

as an operation on G and M.

In addition to the group postulates determined for G and M, we verify that the

subsequent three conditions, ‘commutativity’, ‘associativity’, and ‘distributivity’, hold for

all ‘a(j)i’s (2 G) and ‘Aj’s (2 M) (See Appendix H for proof ).

Therefore, G and M satisfy the composition rules for ‘rings’ [1,2].

Moreover, with the existence of additive inverses and multiplicative inverses, G and

M satisfy separately the conditions for ‘fields’ [1,2].

Again, the reasons why multiplication and division as modulo operations on M can

be defined is that the number ‘7’ is prime; the use of a prime modulus ensures that the

multiplicative inverse Aj
-1 exists for any Aj [13,14]. If, for example, the composition law

of M were to be defined modulo ‘10’, it would be convenient to understand such models

within the base-10 system where analysis would be more effective. However, given this

decimal system (modulo 10), only addition (or subtraction) is possible as multiplication

and division cannot be uniquely defined because ‘10’ is not prime; the uniqueness of

‘Aj
-1’ is lost.

On the bases of these results, if the (j-1)-th state Aj-1 changes into (j)-th state Aj, the

operation inducing this change would require ‘a(j-1!j)i’s, calculated by subtracting a(j-1)i
from a(j)i retrospectively after the regular determinations of each a(k)i (k = 1,. . .,j). We

then write

A j�1!jð Þ ¼ ½a j�1!jð Þ1ja j�1!jð Þ2ja j�1!jð Þ3j . . . ja j�1!jð Þij . . . ja j�1!jð Þn�1ja j�1!jð Þn� mod 7ð Þ

where j = 2,. . .,m, with m a natural number (n is the number of components).

Thus, if a course of a treatment comprises m stages, ‘A1!A2!A3!A4. . .Am-2!
Am-1!Am’, the terminating state of this series Am can be expressed recursively as the

combination of the initial state A1 and operations A(j-1!j) (these being also elements of

M) with modulo 7 arithmetic (addition, subtraction, multiplication and division

denoted collectively by ‘†’) in the following way:

Am ¼ A1†A 1!2ð Þ†A 2!3ð Þ†A 3!4ð Þ† . . . †A m�2!m�1ð Þ†Aðm�1!mÞ; ð5Þ

where all operations ‘A(j-1!j)’ (j = 2,. . .,m) would be determined retrospectively using the

already confirmed states ‘A1, A2, . . ., Am’. Here ‘†’ could be any one of the arithmetic

operations. In other words, all states Ai belong to field M, and implies that all such

states are connected in a series of transitions defined by operations in M; all elements

are then closed within M under modulo 7 arithmetic.

Now, as a first step, if we use solely modulo 7 addition ‘*’, the state Am can be

expressed recursively as follows:

Am ¼ A1 � A 1!2ð Þ � A 2!3ð Þ � A 3!4ð Þ � . . . � A m�2!m�1ð Þ � Aðm�1!mÞ: ð6Þ
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Naturally, this can be confirmed easily using simple examples. If we are given states

A1 ¼ 1 4j j0j . . . 3j j . . . 6j j1½ � mod 7ð Þ;
A2 ¼ 2 6j j3j . . . 1j j . . . 0j j5½ � mod 7ð Þ;
A3 ¼ 4 0j j5j . . . 4j j . . . 3j j6½ � mod 7ð Þ;
A4 ¼ 0 2j j3j . . . 6j j . . . 2j j4½ � mod 7ð Þ;

then the series of state-changes for ‘A1!A2!A3!A4 (m= 4)’ can be deduced:

A 1!2ð Þ mod 7ð Þ¼ A2 mod 7ð Þ�A1 mod 7ð Þ¼ A2�A1f g mod 7ð Þ
¼ 2� 1 6� 4j j3� 0j . . . 1� 3j j. . . 0� 6j j5� 1½ � mod 7ð Þ
¼ 1 2j j3j . . . 5j j. . . 1j j4½ � mod 7ð Þ;

A 2!3ð Þ mod 7ð Þ¼ A3�A2f g mod 7ð Þ
¼ 4� 2 0� 6j j5� 3j . . . 4� 1j j. . . 3� 0j j6� 5½ � mod 7ð Þ
¼ 2 1j j2j . . . 3j j. . . 3j j1½ � mod 7ð Þ;

A 3!4ð Þ mod 7ð Þ¼ A4�A3f g mod 7ð Þ
¼ 0� 4 2� 0j j3� 5j . . . 6� 4j j. . . 2� 3j j4� 6½ � mod 7ð Þ
¼ 3 2j j5j . . . 2j j. . . 6j j5½ � mod 7ð Þ:

ð7Þ

The terminating state of A4 can be recalculated recursively:
A4¼ A1�A 1!2ð Þ�A 2!3ð Þ�A 3!4ð Þ mod 7ð Þ
¼ A1þA 1!2ð ÞþA 2!3ð ÞþA 3!4ð Þ mod 7ð Þ
¼ 1 4j j0j . . . 3j j. . . 6j j1½ �þ 1 2j j3j . . . 5j j. . . 1j j4½ �þ 2 1j j2j . . . 3j j. . . 3j j1½ �

þ ½3 2j j5j . . . 2j j. . . 6j j5� mod 7ð Þ
¼ ½1þ 1þ 2þ3 4þ2þ 1þ2j j0þ3þ 2þ 5j . . . 3þ5þ 3þ2j j. . .

6þ1þ 3þ6j j1þ4þ 1þ5� mod 7ð Þ
¼ 0 2j j3j . . . 6j j. . . 2j j4½ � mod 7ð Þ

Results
As seen above, our example from within clinical medicine of psychiatric disease states

are definable in the style of an 18-fold Cartesian product of Z7, i.e., Z7
×18 = Z7×. . .×Z7

(18 times). We are able to construct in a simple manner set G� {a(m)i| m= 1,2,3,. . .(the

patient’s history of the i-th symptom)} and M� {Am | Am 2 Z7
×18 (the set of all possible

assessments of the patients)}, adding composition rule ‘modulo 7 addition’ so that G

and M satisfy the group postulates.

Discussion
In the “Model Assumptions” section, we gave a simple description of our ideas that

might apply in classifying psychiatric states using group-theory notions. There, several

samples were given describing changes in clinical diagnosis with/without interventional

treatment. We took into account the severity of the 18 symptoms associated with

schizophrenia by devising a presumptively idealized evaluation scale based on the

BPRS-I to help simplify our discussions. By setting up seven grades of severity, indexed

from 0 to 6, we regarded the assessed patient scores ‘Aj’= [a(j)1|. . .|a(j)18] of schizophre-

nia not only as patient states but as operations that act on patient states under modulo

7 addition. The associated group structure Z7 is finite, being composed of elements

{0,1,2,3,4,5,6}, the group G is {a(m)i| m= 1,2,3,. . .}, and the group M is {Am | Am 2
Z7
×18}, the focal structure of our method, being composed as an 18-tuple combination
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of elements of G. To broaden the applicability of group M, we added modulo 7 multi-

plication and division to extend G as a ring or field. The conjecture is that, with mod-

ulo 7 arithmetic, M could potentially be the construct applicable in clinical psychiatry

in particular and medicine in general.

We envisage something along the following lines. If algorithms are established ad-

equately, we see advantages in monitoring patients’ progress throughout the course of

the psychiatric condition, particularly when specific medication is prescribed. Ordinal rat-

ings or scoring from diagnostic evaluations are merely a series of combinations of scores

‘A1,A2, . . .,Am’. However, if these are expressed as in (6), we are then able to trace a clin-

ical course easily and recognize the changes that occur at successive evaluations. This

change in perspective is, we infer, one of the novelties of our model. For this reason, tran-

sitional expressions, as in (6), clearly emphasize a patient’s clinical progress from an

initial state A1 to a current state Am. We believe that this viewpoint might enable us to

understand the progressive states of each patient over stepwise intervals. Moreover,

we expect unknown advantages might exist in this kind of sophisticated handling or

monitoring of disease states that algebra, and particularly groups, rings, and fields, affords.

In terms of standardizing the application of this model, the rules for determining the

scores might be various. For example, comparison between particular components at

different moments could be possible, thereby two different states of a patient with spe-

cified symptoms could be assessed for effectiveness of a specified medication adminis-

tered over some time period; e.g., we can compare pre- and post-administering states

of a patient given sertraline 25 mg/d over a 14 day period. Alternatively, a plurality of

components could be assessed during changes over the same period to overview the

evolution of various symptoms following a certain treatment given to a patient. In this

regard, we note that changes in the components also include changes in the natural

course of the illness independent of whether treatment is given or not. For these rea-

sons, we presume that, given a rigorous methodology concerning operations to be con-

ducted within this model, the algebra perspective as captured by modulo arithmetic

might be of advantage in recording and handling large amounts of data, i.e., the many

patient histories and treatments. Although this description might not be expected for

the present to produce clinical prognoses, we believe that this can be a goal for the fu-

ture if foundations are prepared rigorously.

We conjecture that there might be grounds to expect that our model might be useful

in compressing the vast amounts of clinical data, especially as personal computers are

in daily use. Interestingly, symptom gradings other than the BPRS (BPRS-I) are also de-

finable. For instance, the severity of ‘headache’, ‘nausea’, ‘hypernatremia’, ‘hypokalemia’,

‘hypercreatinemia’ and ‘hyperthyroidism’ might be Z7-gradable in future medical prac-

tice (namely, j = 1,..,m with m the number of assessment sessions, i = 1,..,n with n the

number of symptoms related to a given patient’s illness). Moreover, TNM classification

of malignant tumors could be also described in the same way (e.g., Stage: T0 through

T6 to represent the development from absence of tumors to small tumors, to spreading

and/or invasive primary tumors; Stage: M0 through M6 to represent distant metasta-

sis). The model we proposed might be applicable to any set of symptoms and clinical

findings that is able to be quantified in a similar way. Additionally, if symptoms are

complementary (e.g., ‘hypernatremia’ and ‘hyponatremia’), then one or other should be

‘0’. If severity can be linearly graded and ideally standardized through rigorous
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optimized methods (e.g., hypernatremia scoring ranges of 0: 135−145, 1: 146−149, 2:
150−153, 3:154−157, 4:158−164, 5:165−170, 6: ≥ 170 mEq/l), a generalized application

like the International Classification of Diseases 10-th Revision (ICD-10) might be possible

for any disease once symptoms (clinical findings) have been correlated with an indexing

number ‘i’. To broaden the ICD-10-like utilities, future studies in line with our methods

would be desirable. Naturally, determining an optimal grading of severity of symptoms at

the assessment stage is a crucial issue if this model is to be useful in any way.

Most of all, one of our particular concerns about the model is its applicability. The

treatment of a group by its matrix representation has been extensively studied [15].

Thereby, idealistically, using suitable methods, the prescribed state of illness is pre-

sumed to display appropriate group theoretic properties investigable by theorems of

group theory. If, in particular, the severities of many symptoms of patients can be

expressed in a square-matrix form, matrix functions might be of use in calculating spe-

cific universal values (e.g., the quadratic form of matrix) that quantify illness character-

istics. Also, eigenvalues of the matrix might be of advantage in understanding illness

pathology or in planning treatments. In addition, notions from other fields might be of

possible applicability to the present model; for instance, the Chinese remainder the-

orem, geometric algebra, algebraic coding theory, and matrix group, where there might

be potential affinities between these and our present model [1,2].

Intriguingly, partial combinations of ‘a(j)i’s such as Åj = [a(m)1|a(m)4|a(m)5|. . .|a(m)12]

(mod 7) (partial components of ‘Aj’s) are also found to meet all rules of group, ring and

field (such as the existence of unique inverses for Åj and an identity element) in similar

manner to the original ‘Aj’. This might mean that these smaller-sized partial illness

states can be treated independently. In contrast, we can compound or identify other

disease states (e.g., bipolar disorder, anxiety disorder, etc.) for the same patient if an ap-

propriate collection of disease symptoms is accessible.

The limitations of the present study should be noted. The first is, there is no assurance

that the grading scheme using the BPRS-I have equal weighting and the arbitrary scores

could be calculated independently of each other. Moreover, it is unclear whether the

scores we treat as components would reflect accurately states of the illness. To our know-

ledge, there is no evidence supporting this assumption. Grading objectively the severity of

symptoms is a crucially important issue that should be determined on the bases of the

data obtained and prospecting through the data employing a rigorous methodology.

Second, we developed procedures based on only ‘modulo 7 addition’ and ‘modulo 7 arith-

metic’. The operations obey the rules of not only ‘group’ but also ‘ring’ and ‘field’; however,

the meaning of each operation remains unclear. There is room where further development

is possible. In a future study, extensions to include rings and fields (requiring multiplication

and division) hopefully will have usefulness illustrated by specific applications.

Third, concerning the rules of group and others (ring, field), we assumed that ‘asso-

ciativity’ is true in clinical treatment settings and/or natural developments over the

course of time. Apparently, ‘commutativity’ cannot be met between medical states (e.g.,

the ‘Aj’s) because changes in order of clinical treatments do cause differences in the

results of disease states. Medical states and medical treatments (containing natural

changes) might arise naturally though for ‘associativity’ because division into a series of

treatments does not change clinical results when these would have been performed in

that order; the implication being that all pertinent treatment has been provided to the
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patient in a specified order. For this reason, the strict algebraic structure might be the

semi-group where only associativity ‘(a*b)*c = a*(b*c)’ is satisfied and inverses are not

defined. Therefore, the rules of ‘ring’ and ‘field’ might not strictly hold in a clinical set-

ting as ‘additive commutativity’, that is needed to establish a ‘ring’ and ‘field’ structure,

is not present in our model. This fact might restrict such applications to some degree.

Fourth, because the ideally healthy state was in our model expressed as an identity elem-

ent E, the ideally desirable treatment (with natural changes also being taken into

accounted) for the state Aj is the operation Aj
-1. However, although this concept might be

useful in understanding the meaning of ‘ideal treatment’, this might not be always effective

as the most desirable treatment and/or clinical course. Interpreting the relationship be-

tween Aj and Aj
-1 is still unclear and does not warrant excessive examination at this stage.

Fifth and finally, our model in its present inception might be too abstract to apply to

clinical scenarios. Strange to say, but we did not always put an important meaning on

the total score of the BPRS-I. Conventionally, the BPRS has been assumed to be an

evaluation scale for which the purpose was to sum up the individual score of each

symptom. However, in this article, we exploited the psychiatric evaluation scale not

only as a tool for indicating the total severity of the illness but also that as a ‘vector-

based model’ (Cartesian products of modulo groups) to display the respective scores of

each symptom from patient assessments. This latter interpretation has been the focus

up to this point. Leastwise, the usefulness in introducing group theory and other alge-

braic structures in classifying severity-based expressions (grading) of disease states

depends upon further improvements. Of course, the focus of the present model should

be on how we can interpret the group theory structure in light of medical assessment,

progression, and treatment, although that may be tenuous as this stage. We hope future

studies demonstrate the utility of our method.

Without doubt, the model we have presented is far from being of immediate practical

application in clinical settings. Nonetheless, we would emphasize that the versatility of

the use of group theory is currently beyond imagination for reasons that behaviors of

certain models can be treated generally and unexceptionally if genuine mathematical

methods are performed on these models. Therefore, we heartily desire that future stud-

ies of such issues can be explored in more effective forms, not only in the field of

psychiatry, but also in other medical fields, where more generalized and sophisticated

operations could make a significant contribution.
Conclusions
Within the large limitations of our methodology, it was considered that, not only in the

field of psychiatry but also other fields of medicine, there might be room for a more

generalized notation from the theory of groups (if not rings and fields) realized via

some graduated expression. Such notation might possess potential versatility in formu-

lating or systematizing a more rationalized descriptive model of clinical medicine that

would follow similar developments in other branches of natural science.
Appendix A
For any ‘a’ (2Z7) other than ‘0’, the relation ‘a ×Z7 (mod 7) = {a × 0, a × 1, a × 2, a × 3,. . .,

a × 6} = Z7 (mod 7)’ is true. Thus, because ‘7’ (the group order of Z7) is a prime number,
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there is a unique ‘a-1’ (2Z7) such that ‘a (mod 7) × a-1 (mod 7) = 1 (mod 7)’. Therefore,

we can define modulo 7 division as ‘b/a (mod 7) (a,b2Z7) = b × a-1 (mod 7)’ by using

the previously defined ‘a-1.’ For instance, with b = 4 and a = 5 (mod 7), only one ‘a-1’

exists that satisfies ‘a × a-1 (mod 7) = 1 (mod 7)’. As for ‘5 × a-1 (mod 7) = 1 (mod 7)’, then

‘a-1 = 3’ meets the purpose. Hence, ‘b/a (mod 7)’= 4× 3 (mod 7) = 5 (mod 7).
Appendix B
For example, if a certain patient is assessed under the BPRS-I, the combination of indi-

vidual score ‘A1’ would be expressed as follows:

A1 ¼ ½1 4j j0j . . . 3j j . . . 6j j1� mod 7ð Þ: ðA:1Þ
Hence, if the state of the same patient is reassessed some time later, the combination

of the respective scores ‘A2’ would be described in the same way:

A2 ¼ ½2 6j j3j . . . 1j j . . . j0j5� mod 7ð Þ: ðA:2Þ
Subsequent patient assessments would be written in the form:
Am¼ ½a mð Þ1ja mð Þ2ja mð Þ3j . . . ja mð Þij . . . ja mð Þn�1ja mð Þn� mod 7ð Þ ðA:3Þ

Appendix C
In analogy, ‘positional vectors’ have a double meaning: one is the position itself in the

vector space, and the other is as the operation of parallel translation from the origin.

From this perspective, we see at once that ‘a(m)i’, signifying the i-th symptom of the m-

th state as rated under the BPRS-I (the former meaning) can also be regarded as an op-

erator that changes the state of the respective symptom ‘i’ from the healthy state ‘0’ to

‘a(m)i’ (the latter meaning). Using modulo 7 addition

a mð Þi ¼ 0 mod 7ð Þ þ a mð Þi mod 7ð Þ:

This ensures that ‘Am’ can be interpreted as the operation of ‘Am’ on ‘E’. More generally
a jð Þi mod 7ð Þ þ a mð Þi mod 7ð Þ ¼ a kð Þi mod 7ð Þ:

so that the two components a(j)i and a(k)i can be regarded as being linked by the oper-

ation a(m)i (mod 7)= a(k)i (mod 7) - a(j)i (mod 7).
Appendix D

Іb) Associativity: for any Aj (2 M), the relation

ðAj � AkÞ � Al ¼ Aj � ðAk � AlÞðj; k; l ¼ 1; 2; 3; . . . ;positive integersÞ;

that is, {(Aj +Ak) +Al} (mod 7) = {Aj + (Ak +Al)} (mod 7) holds.

IIb) Identity: for any Aj (2 M), there exists an identity element E(=[e|e|e|. . .|e|. . .

|e|e] = [0|0|0|. . .|0|. . .|0|0] (2 M)), such that

Aj � E ¼ E � Aj ¼ Aj;

that is {Aj + E} (mod 7) = {E +Aj} (mod 7) =Aj (mod 7) holds.
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IIIb) Inverse: For any Aj (2 M) there exists unique element (Aj) (2 M), such that

Aj*(Aj) = (Aj)*Aj = E,
that is, {Aj + (Aj)} (mod 7) = {(Aj) +Aj} (mod 7) = E (mod 7)

for (Aj) (denote ‘Aj
-1’), by choosing (Aj) as meets following relationship;

ðAjÞ ¼ ½7 7j j7j . . . 7j j . . . 7j j7� � Aj mod 7ð Þ
¼ ½7 7j j7j . . . 7j j . . . 7j j7� � ½a jð Þ1ja jð Þ2ja jð Þ3j . . . ja jð Þij . . . ja jð Þn�1ja jð Þn� mod 7ð Þ

this relationship would be satisfied.
Appendix E
All changes between the two states are included in the operator A(j!k) (mod 7). From

this standpoint, the change ‘Aj!Ak (mod 7)’ is encoded in the ‘operator A(j!k) (mod

7)’ and would contain the patient’s response to medical treatment as graded under

the BPRS (BPRS-I); natural changes accompanied in the course of the disease would

automatically be included. By definition, ‘A(j!k) (mod 7)’ also belongs to group ‘M’ (i.e.,

A(j!k) 2 M) and thus operations between any two are closed within ‘M’. Therefore, all

operations among Aj, Ak and A(j!k), satisfy the group postulates of ‘M.’

Appendix F
Consider state A1 (A.1) changing into state A2 (A.2), ‘A1 (mod 7)!A2 (mod 7)’; the

difference operator A(1!2) (mod 7) is calculated retrospectively given states A1 and

A2 as follows:

Að1!2Þ mod 7ð Þ ¼ A2 mod 7ð Þ � A1 mod 7ð Þ ¼ A2 � A1f g mod 7ð Þ
¼ ½2 6j j3f j . . . 1j j . . . 0j j5� � ½1 4j j0j . . . 3j j . . . 6j j1�g mod 7ð Þ
¼ ½2� 1 6� 4j j3� 0j . . . 1� 3j j . . . 0� 6j j5� 1� mod 7ð Þ
¼ ½1 2j j3j . . . �2j j . . . �6j j4� mod 7ð Þ
¼ ½1 2j j3j . . . 7� 2j j . . . 7� 6j j4� mod 7ð Þ ¼ ½1 2j j3j . . . 5j j . . . 1j j4� mod 7ð Þ:

ðA:4Þ

The component ‘-2’ is equivalent to ‘5’, and ‘-6’ is also to ‘1’ under the condition of

modulo 7 operation. Operationally, the use of the minus ‘-’ is convenient in under-

standing decreases in the severity of symptoms, occurring when the value of the

component of the latter state is smaller than that of the former state; if ‘5’! ‘3’, then

‘3-5’= ‘-2’= ‘5’ under modulo 7 addition (subtraction).

We verify relation (4) for A1 and A(1!2) in the following way:

A1 � Að1!2Þ ¼ A1 mod 7ð Þ þ Að1!2Þ mod 7ð Þ ¼ A1 þ Að1!2Þ
� �

mod 7ð Þ
¼ ½1 4j j0f j . . . 3j j . . . 6j j1� þ ½1 2j j3j . . . 5j j . . . 1j j4�g mod 7ð Þ
¼ ½1þ 1 4þ 2j j0þ 3j . . . 3þ 5j j . . . 6þ 1j j1þ 4� mod 7ð Þ
¼ ½2 6j j3j . . . 1j j . . . 0j j5� mod 7ð Þ
¼ A2 mod 7ð Þ

Appendix G
For multiplication of two elements

Aj mod 7ð Þ � Ak mod 7ð Þ ¼ ðAj � AkÞ mod 7ð Þ
¼ ½a jð Þ1 � a kð Þ1 a jð Þ2 � a kð Þ2

�� ��a jð Þ3 � a kð Þ3j . . . ja jð Þi � a kð Þij . . .
ja jð Þn�1 � a kð Þn�1ja jð Þn � a kð Þn�

(for all components; mod 7).
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Therefore, (Aj ×Ak) (mod 7) 2 M, and the group order of M is 718 (= W).

Let ‘Ak’ be an element of M other than ‘E’. Then ‘Ak×M (mod 7) = {Ak ×A1, Ak ×A2,

Ak ×A3,. . ., Ak ×AW} =M (mod 7)’ is true.

Hence, (Aj ×Ak) (mod 7) 2 M, as modulo 7 multiplication is closed as an operation.

Because ‘Ak
-1’ is composed of the n-tuple product of components from ‘a(k)1

-1’ to ‘a(k)n
-1’

(n = 18), the same argument holds for each component, and for any ‘Ak’ with the

exception of ‘E’ (=[0|0|0|. . .|0|. . .|0|0]). Each ‘Ak
-1’ (2 M) is uniquely defined by rela-

tion ‘Ak
-1 = [a(k)1

-1 |a(k)2
-1 |a(k)3

-1 |. . .|a(k)i
-1|. . .|a(k)n

-1 ]’ with ‘a(k)i (mod 7) × a(k)i
-1 (mod 7) = 1

(mod 7)’;

Ak mod 7ð Þ � Ak
�1 mod 7ð Þ ¼ ½a kð Þ1 � a kð Þ1�1ja kð Þ2 � a kð Þ2�1ja kð Þ3 � a kð Þ3�1j . . .

ja kð Þi � a kð Þi�1j . . . ja kð Þn�1 � a kð Þn�1
�1ja kð Þn � a kð Þn�1� mod 7ð Þ

¼ ½1 mod 7ð Þ 1 mod 7ð Þj j1 mod 7ð Þj . . . 1 mod 7ð Þj j . . .
j1 mod 7ð Þj1 mod 7ð Þ�

¼ ½1 1j j1j . . . 1j j . . . j1� mod 7ð Þ

Hence, we can define ‘Aj (mod 7)/Ak (mod 7)’ in the following way:
Aj mod 7ð Þ=Ak mod 7ð Þ ¼ ðAj=AkÞ mod 7ð Þ
¼ ðAj � Ak

�1Þ mod 7ð Þ
¼ ½a jð Þ1 � a kð Þ1�1ja jð Þ2 � a kð Þ2�1ja jð Þ3 � a kð Þ3�1j . . .

ja jð Þi � a kð Þi�1j . . . ja jð Þn�1 � a kð Þn�1
�1ja jð Þn � a kð Þn�1�

where a(k)i (mod 7) × a(k)i
-1 (mod 7) = 1 (mod 7) holds.

Thus, (Aj/Ak) (mod 7) belongs to M, and modulo 7 division over M is closed as an

operation. To sum up, division modulo 7 can be defined for G and M.

Appendix H
The group postulates for elements of G and M are demonstrated below.

Commutative law for addition:

a jð Þi mod 7ð Þþa kð Þi mod 7ð Þ¼ a jð Þiþa kð Þi mod 7ð Þ
¼ a kð Þiþa jð Þi mod 7ð Þ¼ a kð Þi mod 7ð Þþa jð Þi mod 7ð Þ
Aj mod 7ð ÞþAk mod 7ð Þ¼ AjþAk mod 7ð Þ
¼ AkþAj mod 7ð Þ¼ Ak mod 7ð ÞþAj mod 7ð Þ

Associative law for multiplication:

a jð Þi � a kð Þi
� �� a lð Þi mod 7ð Þ ¼ a jð Þi � a kð Þi � a lð Þi

� �
mod 7ð Þ

Aj � Ak
� �� Al mod 7ð Þ ¼ Aj � Ak � Alf g mod 7ð Þ

Distributive law for addition and multiplication:

a jð Þi � a kð Þi þ a lð Þi
� �

mod 7ð Þ ¼ a jð Þi � a kð Þi þ a jð Þi � a lð Þi mod 7ð Þ
a jð Þi þ a kð Þi

� �� a lð Þi mod 7ð Þ ¼ a jð Þi � a lð Þi þ a kð Þi � a lð Þi mod 7ð Þ
Aj � Ak þ Alf g mod 7ð Þ ¼ Aj � Ak þ Aj � Al mod 7ð Þ
Aj þ Ak

� �� Al mod 7ð Þ ¼ Aj � Al þ Ak � Al mod 7ð Þ
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