右利き交差性失語を呈しMRIにて皮質層状壊死を認め不完全脳梗塞による
選択的神経細胞死が疑われた1例

1至誠会第二病院神経内科
2東京女子医科大学医学部神経内科学
3さいたま赤十字病院神経内科
4おかやまクリニック

宮崎　一秀1・内山真一郎2・岩田　誠2・山本　健詞3・岡山　健次4

（受理　平成26年3月3日）

A Case of Crossed Aphasia with Cortical Laminar Necrosis Detected by Magnetic Resonance Imaging:
Suspected Selective Neuronal Death due to Incomplete Cerebral Infarction

Kazuhide MIYAZAKI1, Shinichiro UCHIYAMA2, Makoto IWATA2,
Kenji YAMAMOTO1 and Kenji OKAYAMA1

1Department of Neurology, Shiseikai Daïni Hospital
2Department of Neurology, Tokyo Women’s Medical University School of Medicine
3Department of Neurology, Saitama Red Cross Hospital
4Okayama Clinic

A 73-year-old man was admitted to our hospital because of a sudden onset of left hemiparesis and crossed aphasia. He had a 14-year history of hypertension and dyslipidemia. Electrocardiography revealed atrial fibrillation. Magnetic resonance (MR) images on admission showed hyperintense changes on diffusion weighted images (DWI) involving the right anterior cerebral artery (ACA) area. A 18F-I-IMP single-photon emission computed tomography scan on Day 7 revealed severely decreased uptake in the right ACA area and moderately decreased uptake in the frontal part of the middle cerebral artery (MCA) area. MR images one month later revealed wide laminar hyperintense changes on T1-weighted imaging (T1WI) in the ACA area. They also revealed narrow laminar hyperintense changes in the frontal part of the MCA area without cystic changes, suggesting cortical laminar necrosis. Cystic changes became apparent in the ACA area 10 months later, which suggested a typical cerebral infarction. We speculated that the right MCA was previously occluded, with the development of collateral circulation from the right ACA, and this mild to moderate hypoperfusion resulted in an incomplete cerebral infarction of the frontal part of the right MCA area. We thus present a rare case of ischemic stroke with cortical laminar necrosis that was suspected to be selective neuronal death caused by incomplete cerebral infarction.

Key Words: cortical laminar necrosis, selective neuronal death, incomplete cerebral infarction, crossed aphasia

緒 言
皮質層状壊死は発生後脳症などにおいて大脳皮質の神経細胞のみが数時間～数日後に細胞死を来す「選択的神経細胞死」であり22。動物実験においては一過性全脳虚血後に観察することができる23。脳梗塞においては神経細胞だけでなく、グリア、神経線維を含め組織全体が損傷するため、通常は選択的神経細胞死を来さない24。我々は潜在性の脳動脈粥状硬化に心原性脳塞栓を合併し側副血行路の灌流低下を来したことが原因と考えられる皮質層状壊死を観察し、不完全脳梗塞による選択的神経細胞死が疑われた。同様の報告は過去に近くまれな症例と考えられた。
症 例

患者：73歳，男性。
主訴：左手足が動かない，言葉が話せない。
既往歴：59歳より高血圧，脂質異常症。
現病歴：200X年夕食後突然左半身が動かなくなり，発語障害が出現したため，救急車を要請，同日で赤十字病院神経内科へ搬送された，左片麻痺，失語を認め，頭部CTで脳出血は認めず脳梗塞の疑いで同院に入院となった。
現症：入院時のバイタルサインは血圧202/112mmHg，脈拍120bpm，不整であった。神経学的所見としては意識は清明，発語障害を認めるが理解は良好，復唱は不能であり，口舌顔面失行を認めた。脳神経系では中枢性の右顔面麻痺を認めた以外に異常を認めなかった。また左上下肢の筋力低下は重度であり，左半身の全感覚鈍麻，左上下肢反射亢進，左Babinski徴候を認めた。協調運動は右は正常，左は評価不能であり，起立歩行は不能であった。標準失語症検査では口頭言語の表出障害が主体であり，浮動的な構音の誤りが多く，字性錯語を伴っており，単語の復唱は保たれていたが，文章の復唱，叙述が障害され，書字および理解は保たれていた（Fig.1）。生来右利きであり，脳損傷の既往がなく，右半球に限局した病変であることより右利き交又性失語と考えられた。

検査成績：血液検査では脂質異常症（TG163mg/dl，HDL39mg/dl，LDL172mg/dl），軽度の凝固能亢進（TAT3.6ng/ml，D-D0.6μg/ml），血小板活性化（β-TG117ng/ml，PF479ng/ml）を認めた。入院時心電図において認められた心房細動（心拍数120bpm）は，第2病日より洞調律（心拍数60bpm）にしたことより発作性心房細動と考えられた。心エコーでは明らかに異常を認めなかった。頭部エコーでは両側総頭動脈に軽度のplaquesを認めめた。MRIでは右前大脳動脈（ACA）領域に拡散強調画像（TR5,999msec，TE106msec，b値：750），T2強調画像（TR3,500msec，TE96msec），プロトン密度強調画像（TR3,500msec，TE12msec）で高信号，T1強調画像（TR480msec，TE14msec）で低信号を認めた（Fig.2A，B，C，D）。また，右中大脳動脈

Fig. 1 Standard Language Test of Aphasia (SLTA) (Day 14)
The Standard Language Test of Aphasia (SLTA) revealed the expressive impairment accompanied by literal paraphasia. Although the patient could repeat words, he could not repeat sentences. His description was impaired, but his writing and comprehension were maintained.
Fig. 2 Magnetic resonance (MR) images

Magnetic resonance (MR) images on admission showing hyperintense changes on diffusion weighted imaging (A), T2-weighted imaging (T2WI) (B), proton density weighted imaging (PDWI) (D), and hypointense changes on T1-weighted imaging (T1WI) (C) involving the right anterior cerebral artery (ACA) area. MR images acquired one month later reveal wide laminar hyperintense changes of the cortex on T1WI and hyperintense changes of the white matter on T2WI and PDWI in the right ACA area, indicating cystic changes (E) (G). Narrow laminar hyperintense changes on T1WI in the frontal part of the right middle cerebral artery (MCA) area, without subcortical hyperintense changes on T2WI, suggest cortical laminar necrosis (F). An MR image obtained 10 months later shows marked hyperintense changes of the white matter on T2WI in the right ACA area, indicating cystic changes, a slight hyperintense change of the white matter in the frontal part of the right MCA area (H), and diminished laminar hyperintense changes of the cortex on T1WI in the frontal part of the right MCA area (I).
（MCA）領域前半部は拡散強調画像、T2強調画像、ブラトニ密度強調画像で淡い高信号を呈したが、T1強調画像では明らかな変化は認めなかった（Fig.2A、B、C、D）。MRAでは右MCAが起始部より先細り状に完全閉塞していた（Fig.3A矢印→）。また頭部CTでは第2病日以降右ACA領域に低吸収域を認めたが出血は認めず、また石灰化も認めなかった。したがって、急性期の時点では失語、右片麻痺という脳梗塞の症状を呈しているにもかかわらず、画像上は責任病巣と断定できる変化を認めなかった。

治療経過：突然の発症であること、発作性心房細動を認めたことより、心原性脳塞栓症が疑われたため入院時より抗凝固薬ヘパリン、脳保護薬（フリークナル消去薬）エダラボンの投与を開始し、再発予防のため抗凝固薬ワルファリンの投与を開始した。

高度の左片麻痺、発語障害が残存したが、経過を通じて左半側無視は認めなかった。7日後の123I-IMP SPECTでは右ACA領域に高度の血流低下、右MCA領域前半部に軽度から中等度の血流低下を認めた（Fig.4）。1ヶ月後のMRIでは右ACA領域はT1強調画像で皮質下の低信号域と皮質の幅広い線状の高信号域、T2強調画像およびブラトニ密度強調画像で皮質下の高信号を認め、皮質層状破壊が考えられた。右MCA領域前半部にはT1強調画像で脳回に沿った幅の狭い線状の高信号域のみを呈し、皮質層状破壊と考えられた（Fig.2F）。この右MCA領域前半部の皮質層状破壊死が失語および右片麻痺の責任病巣と推測された。3ヶ月後のMRIでは右MCAは依然として閉塞していた（Fig.3B矢印→）。10ヶ月後のMRIのT2強調画像では右ACA領域の皮質下は著明に高信号化し、右MCA領域前半部の白質に軽度の高信号を認めた（Fig.2H）。

理学療法、言語療法を行い左片麻痺、発語は徐々に改善、歩行はほぼ自立まで改善したが、左上肢は中等度の麻痺が残存した。自発語は緩徐だが書き、読字、聴解は良好であった。左上肢麻痺の改善に伴い、左上肢の姿勢および動作時の振戦が著明となったため動作時ミオクローススが疑われ、体性感覚誘発電位（SEP）、C-responseを施行した結果、Giati SEPは認めなかったが、安静時にも左刺激時のC-responseが出現した。

考察
突然の発症であること、発症時に心房細動を認めることより、本症例は心原性脳塞栓症が疑われた。
MRAでは右MCAの閉塞を認めたが、拡散強調画像における急性期脳梗塞病巣が同定されたのは右ACA領域のみであった。MRAでの右MCAは先細り状の閉塞を呈していたこと、入院時の拡散強調画像で右MCA領域全体には高信号を認めなかったこと、および脂質異常症の既往より、右MCAは今回脳梗塞発症の以前から粥状硬化による慢性な狭窄が徐々に進行し閉塞に至った可能性が高い。MRIで右MCAが閉塞しているにもかかわらず、SPECTでは右MCA領域の血流はほぼ保たれており右MCA領域前半部のみが軽度から中等度の血流低下を来しているに過ぎないことより、右MCA領域には今回の脳梗塞発症以前から側副血行が存在していたと推測できる。MCA領域の側副血行の主な供給源として、同側のACAおよび後大脳脈（PCA）などが考えられる。本例では右ACA領域の脳梗塞を起こしたことより、右ACAからの側副血行のみが低下し右PCAからの側副血行が保たれたために右MCA領域前半部のみに軽度から中等度の血流低下を来した可能性が考えられる。また、本症例の臨床症状は左片麻痺および失語であり、右ACA領域の脳梗塞は責任病巣とは考えられない。7日後の
SPECTで右MCA領域前半部に軽度から中等度の血流低下を認め、1ヶ月後のMRIで同部位に皮質層状壊死の所見を認めた。この変化は中心前回も含まれており、上肢優位の左片麻痺および右利き交又性失語の責任病巣として矛盾しない。本症例の脳梗塞は潜在的な右MCA閉塞と側副血行路の存在を背景に、突然発症した右ACA閉塞により右ACAから右MCA領域前半部への側副血行が低下し、同部位の軽度から中等度の虚血によって皮質層状壊死を来たしたと考えられる。

皮質層状壊死は脳梗塞症、脳梗塞、てんかん亜積、肝性脳症、モヤモヤ病、薬物中毒などで報告されている。虚血後の発症1週間後に生じる皮質層状壊死は過性脳虚血発作、spectacular shrinking deficit後にみられ、脳梗塞においては虚血病巣およびその周囲の皮質にみられる。高度の虚血においては神経細胞、グリア細胞、白質、血管を含め組織全体が壊死に陥るpan-necrosis（汎壊死）を呈する。軽度から中等度の虚血あるいは過性の全脳虚血後に大脳皮質中層（3, 5, 6層）、海馬CA1領域、小脳Purkinje細胞など特定の部位にのみ組織壊死を呈することが知られている。これらの部位の神経細胞は虚血あるいは低酸素に対して脆弱であり、グリア細胞、血管、組織全体は保たれる。神経細胞のほかに虚血から数時間～数日後に細胞死を来す「選択的神経細胞死」を呈する。虚血における組織壊死を決定するのは、虚血時間、虚血の程度、休温および血糖値であるため、短時間の全脳虚血や軽度～中等度の局所脳虚血は選択的神経細胞死を来しうる。脳梗塞に伴う皮質層状壊死は発症2週間以後に出現するT1強調画像における高信号であり、亜急性期の浮腫性変化を反映してT2強調画像およびプロトン密度強調画像では皮質下を含む高信号に変化する。亜急性期に至って皮質下に生じる囊胞性変化を反映して白質のT1強調画像における低信号、T2強調画像およびプロトン密度強調画像における高信号が明瞭化し周囲の萎縮性変化を伴って保たれた皮質が弧状に観察される。一方、発症後脳症にみられる皮質層状壊死のMRI所見は、皮質に限局したT1強調画像における高信号であり、脳梗塞に伴うものと比べて幅が狭
く、急性期から慢性期を通じて T2 強調画像およびプロトン密度強調画像における顕著な高信号、すなわち周囲の浮腫や囊胞性変化を伴わず、慢性期に T2 強調画像における自質の高信号を認める[14]。本症例の MRI 所見は右 ACA 領域の梗塞巣に伴った皮質層状壊死、右 MCA 領域前半部の皮質層状壊死が認められるが、後者は亜急性期の浮腫性変化、慢性期の囊胞性変化を伴わず、典型的な脳梗塞とは異なる組織変化を反映している可能性が考えられる。MRI の細注時変化、脳血流変化などより、本症例の右 MCA 領域前半部における皮質層状壊死は軽度～中等度の局所脳虚血による選択的神経細胞死が疑われた。これは Garcia らの報告した incomplete infarct（不完全脳梗塞）と一致する。Garcia らによれば脳血流量 15～18ml/100g/min の中等度虚血が数時間持続した場合に不完全脳梗塞を来す[15]。似たような概念として「遅発性神経細胞死」の知られており[16]。これは一般的に短時間の完全虚血のエピソードの数日後に起こる遅発性の神経変性を伴うのであって、慢性の部分的な不完全虚血に続く神経変性を呼ぶのではないとされている[16]

脳虚血後の虚血中心部における神経細胞死は古典的 necrosis であり、高度の虚血・低酸素状態による急激なエネルギー代謝障害により短時間で細胞死。組織損傷を来すのに対して、虚血周辺部のいわゆる penumbral においては古典的 necrosis ではない細胞死（apoptosis や autophagy）が起こる。このような細胞死においてはエネルギー代謝は保たれているため急速な細胞死は起こらないが、虚血後の細胞内 Ca²⁺濃度上昇に伴うカルシウムの活性化、カスパーゼ 3 活性化、apoptosis inducing factor（AIF）発現増加、活性酸素の増加、ポリ ADP リボースポリメラーゼ（PARP）活性化、Fas 受容体活性化などの細胞内外での様々な因子が関与して、数時間から数日にわたって緩徐に進行する細胞死を来す[18][19]。これは不完全脳梗塞による選択的神経細胞死。全脳虚血後の遅発性神経細胞死に共通するプロセスと考えられる。本症例の MCA 前半部に認めた皮質層状壊死の画像は、軽度から中等度の虚血に起因する徐徐に進行する細胞死を反映している可能性が考えられた。皮質下梗塞症例における欠乏、半側無視などの皮質症状についても梗塞に伴わない中等度の皮質虚血低下が症状発現に関与することが示されている[19]。これは線条体内外側領域梗塞（striatecapsular infarction）などにおいて高頻度に観察される。
他の神経疾患を含めて 別冊日本臨床 領域別症候群シリーズ No.26（高須良明編）, pp158-161. 日本臨床社. 東京（1999）
8) 木下 俊: 原発性における cortical necrosis と MRI 所見. 臨放 44: 1369-1373, 1999
18) 岩田祥耕, 森原愛一郎, 馬場正之: ミオクロームス てんかんの体性誘発電位と C response. 総脳波 26: 348-349, 1984