論文審査の要旨

骨代謝マーカーには、骨代謝の基盤的因子である OPG、sRANKL の変動に対しての報告がほとんどない。一方、関節代謝に関連した報告もほとんどない。一方、関節代謝に関連した報告もほとんどない。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかし、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかしながら、骨密度の変動を把握することが非常に重要である。求められている。しかながら...
[結果]
切除標本の検索では、食道上皮の未分化細胞と多くの扁平上皮癌において、Hh 経路と EMT 経路に関わる遺伝子、さらには多くの間葉系遺伝子の発現がみられた。培養細胞を用いた実験では、シクロバミンや siRNA により GLI を抑制することで、EMT 調節転写因子の一つである SIP1 も同時に抑制された。また Hh 経路を阻害することで、食道上皮の分化、食道癌細胞の増殖、浸潤が抑制された。

[考察]
Hh 経路は食道上皮では分化に、食道癌細胞ではその増殖や浸潤に関与すると考えられた。また遺伝子発現から、幹細胞を含む未分化な食道上皮細胞や多くの扁平上皮癌は間葉系の性質を有していた。Hh 経路の GLI の抑制で EMT 経路の SIP1 が抑制されることから、SIP1 は GLI の下流にあり、その転写標的と考えられた。さらに、いくつかの間葉系遺伝子も SIP1 の下流にあり、Hh 経路と EMT 経路の相互作用によりその発現が制御されていると考えられた。

[結論]
食道癌は予後不良な疾患の一つとして知られている、多くの食道扁平上皮癌で Hh 経路の活性化が認められ、その特異的な阻害で増殖、浸潤が効果的に抑制された。本研究で得た結果より、Hh 経路と EMT 経路に関わる遺伝子は、食道癌に対する新たな薬剤のターゲットとなる可能性が期待される。

論文審査の要旨
正常部の食道上皮よりヘッジホッグシグナル（Hh）経路と上皮-間葉転換（EMT）経路に関わる遺伝子を抽出し、扁平上皮癌 42 検体について、その発現の有無を RT-PCR で検索した。さらに、マウス食道代培養細胞およびヒト食道癌細胞株を用い、Hh 経路の特異的な阻害剤であるシクロバミンを添加し、また後者については Hh 経路の転写因子 GLI と EMT 経路の調節転写因子を siRNA を用いてノックダウンし、遺伝子発現、細胞の増殖、浸潤能などの変化について検索した。食道上皮の未分化細胞と多くの扁平上皮癌において、Hh 経路と EMT 経路に関わる遺伝子、間葉系遺伝子の発現がみられた。培養細胞を用いた実験では、シクロバミンや siRNA により GLI を抑制することで、EMT 調節転写因子の一つである SIP1 も同時に抑制された。また Hh 経路を阻害することで、食道上皮の分化、食道癌細胞の増殖、浸潤が抑制された。食道癌に対する新たな薬剤のターゲットを示した優れた論文である。