Helicobacter pylori Infection in Children with Idiopathic Thrombocytopenic Purpura and the Efficacy of Eradication Therapy

Fumiyo KATO, Asako ARAI, Emiko WADA and Sigetaka SUGIHARA

Department of Pediatrics, Tokyo Women's Medical University Medical Center East
(Accepted Mar. 12, 2007)

Eradication of Helicobacter pylori (H. pylori) has been established as the first line treatment for H. pylori-positive chronic idiopathic thrombocytopenic purpura (ITP) in adults according to the results of a nationwide retrospective study in Japan, but it is unclear whether H. pylori infection is a precipitating cause of ITP in children. We investigated the prevalence of H. pylori infection in 25 children (15 boys and 10 girls), median age 2.8 years, who had been diagnosed with ITP during the six years from July 2000 to June 2006. The 11 patients with chronic ITP (44%) were significantly older than the 14 patients with acute ITP (56%), and female gender was significantly associated with higher prevalence of chronic ITP. Testing for H. pylori stool antigen, the 13C urea breath test, and/or testing for the presence of serum anti-H. pylori IgG antibody was performed in the 11 children with chronic ITP. H. pylori infection was diagnosed in three of them (1 boy and 2 girls), and eradication therapy was successful in all three of them. The platelet count in one of the cases increased after the eradication therapy.

In conclusion, H. pylori infection was present in 27% of the children with chronic ITP, and eradication therapy may be warranted for children with H. pylori-positive chronic ITP that is refractory to conventional therapy.

Key words: idiopathic thrombocytopenic purpura (ITP), Helicobacter pylori (H. pylori), eradication, child

Introduction

Idiopathic thrombocytopenic purpura (ITP) is an autoimmune disease caused by platelet antibodies1. About 80% of childhood ITP cases are cured within 6 months, and they are classified as the acute type. The other 20% are classified as the chronic type. The chronic type is usually treated with corticosteroids or immunosuppressive drugs, or by splenectomy, and occasionally patients are restricted from participation in sports to prevent serious bleeding2.

In 1998, Gasbarrini et al reported that the platelet count of 8 patients with H. pylori-positive chronic ITP increased after eradication of H. pylori3, and suggested the efficacy of H. pylori eradication in achieving platelet recovery in chronic ITP. In Japan, eradication therapy has been proposed as the first line of treatment in H. pylori-positive chronic ITP in adults4.

By contrast, there have been few studies on the prevalence of H. pylori infection and the efficacy of eradication in childhood ITP. In a report from Finland, none of 17 children with chronic ITP were diagnosed with H. pylori infection5. In Taiwan, in the other hand, Jaing et al reported finding H. pylori infection in 9 of 22 chronic ITP patients and that the platelet count increased in 5 of them after successful eradication6.

We investigated the prevalence of H. pylori infection and the effectiveness of eradication in childhood ITP patients diagnosed and treated in our hospital during past 6 years.

Patients and Methods

Between July 2000 and June 2006, 25 patients under 18 years of age were diagnosed with ITP at our hospital according to the criteria of the ITP Committee of the Japanese Society of Pediatric Hematology7 and observed for 6 months or more.

An acute ITP group and a chronic ITP group were selected to retrospectively compare sex, age at diagnosis, history of preceding infection, platelet
Table 1 Comparison between the clinical and laboratory features of acute ITP and chronic ITP

<table>
<thead>
<tr>
<th></th>
<th>Acute ITP</th>
<th>Chronic ITP</th>
<th>Total</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of cases</td>
<td>14</td>
<td>11</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>Sex</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Male</td>
<td>11</td>
<td>4</td>
<td>15</td>
<td>.048</td>
</tr>
<tr>
<td>Female</td>
<td>3</td>
<td>7</td>
<td>10</td>
<td></td>
</tr>
<tr>
<td>Age at presentation (year)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>2.1</td>
<td>8.0</td>
<td>2.8</td>
<td>.003</td>
</tr>
<tr>
<td>Range</td>
<td>(0.3 ~ 9.0)</td>
<td>(2.2 ~ 14.0)</td>
<td>(0.3 ~ 14.0)</td>
<td></td>
</tr>
<tr>
<td>Preceding infection</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positive</td>
<td>7</td>
<td>4</td>
<td>11</td>
<td>.688</td>
</tr>
<tr>
<td>Negative</td>
<td>7</td>
<td>7</td>
<td>14</td>
<td></td>
</tr>
<tr>
<td>Platelet count at presentation (×10^4/μl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>1.7</td>
<td>1.7</td>
<td>1.7</td>
<td>.912</td>
</tr>
<tr>
<td>Range</td>
<td>(0.1 ~ 8.6)</td>
<td>(0.3 ~ 6.3)</td>
<td>(0.1 ~ 8.6)</td>
<td></td>
</tr>
<tr>
<td>Minimum platelet count during the course (×10^4/μl)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median</td>
<td>1.2</td>
<td>1.4</td>
<td>1.2</td>
<td>.784</td>
</tr>
<tr>
<td>Range</td>
<td>(0.1 ~ 5.3)</td>
<td>(0.3 ~ 4.8)</td>
<td>(0.1 ~ 5.3)</td>
<td></td>
</tr>
</tbody>
</table>

count at diagnosis, and minimum platelet count. *H. pylori* stool antigen (HpSA), the ^13^C urea breath test (UBT), and/or testing for the presence of serum anti- *H. pylori* IgG antibody (HpAb) was performed in the children with chronic ITP. Two chronic ITP patients with anemia underwent endoscopy for a urease test and histologic examination and culture of *H. pylori*. Eradication was performed by triple eradication therapy in all of the *H. pylori*-positive ITP cases, and the platelet count response was observed. Triple eradication therapy consisted of a proton pump inhibitor (lansoprazole 1.5 mg/kg/day or omeprazole 1 mg/kg/day), amoxicillin (50 mg/kg/day), and clarithromycin (20 mg/kg/day) [8].

Informed consent for *H. pylori* testing, eradication and other treatments for ITP was obtained from the parents of the patients after a careful explanation of the study and the safety of treatments.

Fisher’s exact probability test and Mann-Whitney’s U test were used to perform the statistical analyses. P values < 0.05 were considered significant.

Results

There were 11 patients (44%) with acute ITP and 14 patients (56%) with chronic ITP. Seven (63%) of the chronic ITP patients were girls, as opposed to only three (21%) of the acute ITP patients, and thus female gender was significantly associated with the development of chronic ITP (p = 0.048). Median age at the time of diagnosis of ITP was 2.1 years in the acute ITP group and 6.0 years in the chronic ITP group. In other words, the patients with chronic ITP were significantly older than those with acute ITP (p = 0.003). However, no differences in history of preceding infection, platelet count at diagnosis, or minimum platelet count were found between the acute group and chronic group (Table 1).

HpSA testing was performed in 8 of the chronic ITP cases, the UBT in 5 cases, HpAb testing in 2 cases, and HpSA and the UBT were positive in one case each, and the UBT and HpAb were both positive in one case. *H. pylori* infection was detected in three chronic ITP patients. Moreover, endoscopy was performed in two cases and the urease test was positive in both. In one case, pathological examination of a biopsy specimen revealed *H. pylori* infection (Table 2). Eradication was performed in all three cases that were positive for *H. pylori* infection and was successful in all of them. In one case, the normal platelet count continued without treatment for 12 months or more after eradication. The efficacy rate of platelet recovery after eradication in the children with chronic ITP was 33%.
Table 2 Clinical and laboratory characteristics of H. pylori-positive chronic ITP patients

<table>
<thead>
<tr>
<th>Case</th>
<th>Age at Dx (Years)</th>
<th>Sex</th>
<th>Disease duration to eradication (Months)</th>
<th>Preceding infection</th>
<th>Minimum platelet count ($\times 10^4/\mu l$)</th>
<th>Previous treatment</th>
<th>Diagnostic tests for H. pylori infection</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>7.9</td>
<td>Female</td>
<td>11</td>
<td>Negative</td>
<td>1.8</td>
<td>prednisolone</td>
<td>UBT, HpAb, Endoscopy</td>
</tr>
<tr>
<td>2</td>
<td>2.8</td>
<td>Male</td>
<td>34</td>
<td>Positive</td>
<td>2.4</td>
<td>prednisolone cepharanthine</td>
<td>HpSA</td>
</tr>
<tr>
<td>3</td>
<td>10.6</td>
<td>Female</td>
<td>23</td>
<td>Negative</td>
<td>4.8</td>
<td>None</td>
<td>UBT, Endoscopy</td>
</tr>
</tbody>
</table>

Case Report (Fig. 1)

A 7-year-old girl was taken to an otolaryngologist complaining of frequent nosebleeds, and she was found to have thrombocytopenia (platelet count was 63,000/µl). Five months later, the epistaxis recurred and her face was pale. After admission to our hospital, laboratory tests revealed a leukocyte count of 5,900/µl, with 57% neutrophils, 1% eosinophils, 39% lymphocytes, and 2% monocytes. The hemoglobin concentration was 5.6 g/dl and the platelet count was 63,000/µl. Mean corpuscular volume (MCV) was 54.2 fl.

A diagnosis of ITP with iron-deficiency anemia was made based on these findings, and H. pylori infection was diagnosed based on a positive UBT (12.4%) and positivity for HpAb 3.2 EV (EIA). The endoscopic finding of a positive urease test and pathological examination confirmed H. pylori infection. The platelet count declined to 18,000/µl and the patient was treated with prednisolone (2 mg/kg/day). After a transient increase in platelet count to 248,000/µl, it decreased again to 56,000/µl after observation for 6 months.

Eradication was by treatment with three drugs: omeprazole 20 mg/day, amoxicillin 1,250 mg/day, and clarithromycin 500 mg/day, for 2 weeks. The platelet count gradually increased to 157,000/µl 3 months later, and the patient’s serum converted to HpAb, and the UBT became negative. The patient’s platelet count has remained within the normal
range for more than 2 years thus far.

Discussion

In 1998, Gasbarrini et al in Italy reported observing that ITP regressed after the eradicating H. pylori in adult ITP patients with H. pylori infection. However, Jarque et al in Spain reported that testing for H. pylori should not be routinely included in the initial work-up for ITP, because there is no increase in platelet count after eradication of H. pylori infection in patients with chronic ITP. Emilia et al in Italy reported an overall response in 13 (50%) of 30 adult cases of H. pylori-positive ITP cases after eradication therapy, but there have been conflicting reports about the efficacy of eradication in regard to platelet recovery in adult chronic ITP from country to country.

According to a nationwide retrospective study in Japan, H. pylori infection was found in 70% of adult ITP cases, and a significant increase of platelet count was observed in 63% of the cases in which eradication was successful. These results suggested that eradication should be the first line of treatment for adult H. pylori-positive ITP patients.

There have been only a few studies on ITP associated with H. pylori infection in children. The prevalence of H. pylori infection in childhood ITP varies from country to country, the same as adult ITP. In Japan, Sakai et al tested for HpAb, anti-H. pylori IgG antibody in urine, HpSA, and performed the UBT and verified H. pylori infection in only 2 (5%) of 40 patients under 15 years old diagnosed with chronic ITP. Hayashi et al, on the other hand, reported diagnosing H. pylori infection in two of 10 subjects and that in the one in which eradication was performed, the platelet count increased. They concluded that eradication of H. pylori would also be valuable in children. The results of our study support their conclusion, because H. pylori infection was found in three of 11 cases of childhood chronic ITP, and there was a significant increase in platelet count in one of the three cases of successful eradication. We did not determine the prevalence of H. pylori infection in children with acute ITP. Jiang et al concluded that there were no indications for screening children with presumed acute ITP for H. pylori infection based on a prospective cohort study showing no statistically significant relation between H. pylori infection and acute ITP.

The incidence of H. pylori infection in the general population in Japan is under 10% among those under 10 years of age and 20% in those 10 years of age and over, and it increases to approximately 80% in those 40 years of age and over. The incidence of H. pylori infection in adult ITP patients does not appear to be different from the incidence in the general Japanese population. The incidence of H. pylori infection in the children with chronic ITP in our study was 27%, which may be no higher than the incidence (10-20%) of H. pylori infection in Japanese children in the general population.

Serologic testing for H. pylori is unreliable, especially in young children. The lower incidence of H. pylori infection in childhood ITP reported by Sakai et al is probably due to diagnostic measurement with H. pylori serologic testing. The UBT is indicated for the initial diagnosis of infection in adults, but requires further validation in younger children. HpSA provide an alternative to UBT. It has sensitivity and specificity similar to the UBT, and it is suitable for diagnosis in children. Two patients with anemia in our study underwent endoscopy for the diagnosis of H. pylori. H. pylori culture and antibiotic sensitivity testing is useful for assessing resistance to antimicrobial agents, especially clarithromycin, but biopsy is sometimes contraindicated in chronic ITP because of a bleeding tendency. Eradication without endoscopy can be recommended for treatment of HpSA-positive or UBT-positive (older children) chronic ITP.

Spontaneous cures occur in 30% or more of children with chronic ITP. Whether the increase in platelet count in this study was attributable to H. pylori eradication therapy or a spontaneous remission is unclear. Takahashi et al recently reported that platelet eluates from H. pylori-positive ITP patients reacted with H. pylori cytotoxic-associated gene A (CagA) protein and concluded that the molecular mimicry by CagA played a key role in the pathogenesis of H. pylori-positive ITP. An identification of the platelet antigen that shared an epitope...
with CagA in future will be useful for the discrimination of the efficacy of *H. pylori* eradication therapy from a spontaneous remission.

Conclusion

The prevalence of *H. pylori* infection in childhood ITP was examined in 14 patients with chronic ITP in our hospital. Three patients (27% of the chronic ITP patients, 1 boy and 2 girls) had *H. pylori* infection, and eradication was successful. In one patient the platelet count increased after eradication, and complete remission was achieved. The results of this study suggested that eradication therapy is efficacious in treating childhood chronic ITP as well as adult ITP, and we concluded that eradication should be one of the treatments used in children with *H. pylori*-positive chronic ITP.

References

特発性血小板減少性紫斑病（ITP）の成人例では、約70％の症例で Helicobacter pylori (H. pylori) 感染を認め除菌成功例の半数以上で血小板が増加することから、ITPにおける除菌療法の有用性が確立されてきた。しかし、小児ITPでは、発症後6ヶ月以内に治癒する急性型の症例が多いこと、また H. pylori 感染の検査感度が低いため成人と比較し診断が困難であることなどから H. pylori の関与は明らかではない。今回われわれは、2000年7月～2006年6月までの6年間に当科でITPと診断された25例、男児15例、女児10例、発症年齢中央値28歳（生後3ヵ月～14歳）を対象にITPにおけるH. pyloriの関与について検討を行った。急性型が14例（56%）、慢性型が11例（44%）、慢性型は急性型と比較し女児に多く発症年齢が年長である傾向を示した。慢性型ITPに初診H. pylori抗体陽性で、尿素呼気検査、または血清抗HPIgG抗体検査を施行した。11例中3例（27%、男児1例、女児2例）においてH. pylori陽性となり、H. pylori陽性例の3例に対してamoxicillin、clarithromycin、proton-pump-inhibitorの3剤を14日間使用する除菌療法を行った。全例で除菌は成功し、1例（慢性ITPの9%、ITP症例中4%）において血小板が増加し完全覚解となった。2例では除菌療法の前後での血小板の変動は認められなかった。除菌療法の副作用は特に認められなかった。

今回の検討から、小児ITPにおいてもH. pyloriが関与する症例があることから、一般的な治療に不適な慢性型小児ITP症例では除菌療法を考慮すべき治療法の一つであると思われた。