閲 (p=0.0194) したが、AI とは相関 (p=0.471) しなかった。

[考察] 症状改善群と非改善群において術前 rCBF や rCBF 増加率に有意差を認めなかったが、これは元々術前 rCBF の低い症例を手術適応としているためと考えられた。Diaboric 負荷による術前後 CVR の測定は 6 例のみしか施行されていなかったが、症状改善群では非改善群に比べ CVR 増加率が高く、血管拡張予備能の改が状態改善に関係していると考えられた。術前 rCBF が低いほど術後 rCBF 増加率は高かった。術前 rCBF が低いほど術後の血行動態改善が期待できると考えられた。rCBF 増加率は症状改善とは直接関係しなかった。しかし、rCBF 増加率は血行動態の改善を反映していると考えられるため、今後 rCBF 増加率と長期予後との関連性を検討すべきと考えられた。

[結論] 術前 rCBF 低値群に対する血流再建術では、術前 XeCT により術後の症状改善や短期的な再発予防効果を予測することはできなかった。術後後の CVR 増加率は症状の改善を反映していると考えられた。rCBF 増加率は症状改善の指標にはならなかったが、手術の有効性を示唆する客観的指標になりうると考えられる。

4. STN in Parkinson disease; mapping of the more effective location for stimulation

（脳神経外科）

落合 卓・林 基弘・堀 智勝

（ティモニ大学 脳神経外科）

Regis J・Peragut J-C

（同 神経内科）

Witjas T・Azulay J-P

パーキンソン病外科治療において、視床下核 (STN) は効果的な target として認識されている。私達は、MRI 可視化上の direct target、アトラスを用いた indirect target、そして micro recording による physiological target を用いて最終的な target を決定している。

今回は私達は、実際刺激を行い臨床的に最も効果のある target から MRI 上でその位置を再確認し、視床下核内もしくはその近傍でどの位置が最も有効なのかマッピングを行った。対象は両側視床下核高頻度刺激術を施行した 70 症例のうち、6 カ月以上フォロー可能で、特に効果があった 19 症例を選び。術後、surgi plan system (SPS) を用いて、上述 3 つの target を用いて最終 target を決定した。術後、testing を通して至適刺激部位を定め、その位置を再度 SPS を用いて MRI 上で確認し STN 内の位置関係を調べた。19 症例のうち、左側右側とも 68.4% (13/19) において至適刺激部位が STN 背内側に存在した。いくつかの報告も見受けられるが、パーキンソン病 STN 刺激術において臨床的に特に効果のある位置は視床下核の背内側であるように思われた。これは、視床下核刺激術効果のメカニズムの一環として Forel's field H2 の役割が関係していることが示唆された。

—166—