Vasculitic Neuropathy: a Clinical and Histopathologic Study

Megumi TAKEUCHI, Hiromi KONDO, Atsuko MOCHIZUKI,
Toshiko TAKEMIYA and Makoto IWATA

Department of Neurology, Neurological Institute, Tokyo Women’s Medical University, School of Medicine

Vasculitic neuropathy is associated with various pathologic processes. We have reviewed the clinical and histopathologic characteristics of sural nerve biopsy and muscle biopsy in cases with peripheral neuropathy associated with connective tissue diseases and related disorders in whom sural nerve biopsy was obtained or in cases with necrotizing vasculitis in sural nerve biopsy. These patients consisted of four cases of polyarteritis nodosa (PN), two systemic lupus erythematosus (SLE), two rheumatoid arthritis (RA), one Hashimoto disease, one non systemic vasculitic neuropathy, and one hyperesinophilia. The clinical characteristics of peripheral neuropathy of these cases were as follows: (1) Duration from the onset of the disease and peripheral neuropathy was shorter in PN. (2) Symptoms such as dysesthesia, pain and edema in the extremities were common features in most of the patients. (3) Clinical examination and a nerve conduction study showed the distribution of neuropathy was of multiple mononeuropathy. (4) A motor and sensory nerve conduction study revealed markedly reduced action potentials without slowing of conduction velocity often resulting in absent recordings. (5) Cranial nerves were rarely involved. (6) Sural nerve biopsy revealed marked decrease in myelinated fiber density and active axonal degeneration with relatively well-preserved unmyelinated fibers. (7) Muscle biopsy showed mainly neurogenic changes with some degree of myogenic changes and occasional association with type 2 fiber atrophy.

緒 言

壊死性血管炎を主体とし、全身性に多臓器に侵害を来す疾患は結節性多発性脈炎（polyarteritis nodosa: PN）、アレルギー性肉芽腫性血管炎（allergic granulomatous angiitis: AGA）、Wegener肉芽腫症など壊死性血管炎を一次性の病変とする血管炎候群と呼ばれる一群と慢性関節リウマチ（rheumatoid arthritis: RA）、全身性エリテマトーデス（systemic lupus erythematosus: SLE）、全身性硬化症（systemic sclerosis: PSS）、Sjögren症候群などの膠原病を背景とする疾患群やその他の血管炎がある。それぞれの臨床像は背景となる疾患や障害される臓器などにより異なる。末梢神経はこれらの血管炎においてもしばしば障害さ
表1a 一般理学的、神経学的所見

<table>
<thead>
<tr>
<th>case</th>
<th>age</th>
<th>sex</th>
<th>clinical diagnosis</th>
<th>duration</th>
<th>onset of neuropathy</th>
<th>pain</th>
<th>edema</th>
<th>fever</th>
<th>muscle weakness</th>
<th>muscle atrophy</th>
<th>sensory disturbance superficial</th>
<th>deep</th>
<th>reflex</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>68</td>
<td>M</td>
<td>prob PN</td>
<td>4mo</td>
<td>subacute</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>1</td>
<td>1</td>
<td>+</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>69</td>
<td>F</td>
<td>PN</td>
<td>1mo</td>
<td>sudden</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>3</td>
<td>3</td>
<td>+</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>66</td>
<td>M</td>
<td>PN</td>
<td>1mo</td>
<td>sudden</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>3</td>
<td>4</td>
<td>+</td>
<td>+</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>85</td>
<td>F</td>
<td>PN</td>
<td>9mo</td>
<td>chronic</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td>1</td>
<td>4</td>
<td>+</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>72</td>
<td>F</td>
<td>cutaneous PN</td>
<td>2y</td>
<td>chronic</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>0</td>
<td>3</td>
<td>-</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>6</td>
<td>46</td>
<td>M</td>
<td>AGA</td>
<td>5mo</td>
<td>sudden</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>1</td>
<td>1</td>
<td>+</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>7</td>
<td>52</td>
<td>F</td>
<td>AGA</td>
<td>5y</td>
<td>sudden</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>8</td>
<td>18</td>
<td>F</td>
<td>SLE</td>
<td>2y4mo</td>
<td>chronic</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>9</td>
<td>28</td>
<td>F</td>
<td>SLE</td>
<td>13y</td>
<td>chronic</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>57</td>
<td>F</td>
<td>RA</td>
<td>12y</td>
<td>chronic/sudden</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>77</td>
<td>F</td>
<td>RA</td>
<td>5y</td>
<td>chronic</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>12</td>
<td>54</td>
<td>F</td>
<td>Hashimoto</td>
<td>2y</td>
<td>chronic</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>1</td>
<td>1</td>
<td>+</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>41</td>
<td>F</td>
<td>eosinophilic</td>
<td>2wk</td>
<td>sudden</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>4</td>
<td>4</td>
<td>+</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>14</td>
<td>38</td>
<td>M</td>
<td>NSVN</td>
<td>4y</td>
<td>sudden</td>
<td>+</td>
<td>-</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>-</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

M：男性, F：女性, PN：結節性多発聴覚炎, AGA：アレルギー性肉芽腫性血管炎, SLE：全身性エリテマトーデス, RA：慢性関節リウマチ, NSVN：nonsystemic vasculitides, U/E：upper extremities, L/E：lower extremities.

0：正常, 1：軽度障害, 2：中等度障害, 3：高度障害, 4：機能廃絶。

表1b 主要血液・髄液検査所見

<table>
<thead>
<tr>
<th>case</th>
<th>blood cell count</th>
<th>immunoglobulin & complement</th>
<th>serological</th>
<th>CSF protein</th>
</tr>
</thead>
<tbody>
<tr>
<td>WBC</td>
<td>En(%)</td>
<td>plat</td>
<td>RBC</td>
<td>Hb</td>
</tr>
<tr>
<td>1</td>
<td>10.020</td>
<td>4.8</td>
<td>31.8</td>
<td>375</td>
</tr>
<tr>
<td>2</td>
<td>17.200</td>
<td>3</td>
<td>78.5</td>
<td>332</td>
</tr>
<tr>
<td>3</td>
<td>3.100</td>
<td>5.5</td>
<td>38.5</td>
<td>388</td>
</tr>
<tr>
<td>4</td>
<td>2.100</td>
<td>2</td>
<td>28.9</td>
<td>398</td>
</tr>
<tr>
<td>5</td>
<td>7.200</td>
<td>4.1</td>
<td>26.6</td>
<td>376</td>
</tr>
<tr>
<td>6</td>
<td>31.200</td>
<td>15</td>
<td>31</td>
<td>434</td>
</tr>
<tr>
<td>7</td>
<td>15.900</td>
<td>78</td>
<td>21</td>
<td>450</td>
</tr>
<tr>
<td>8</td>
<td>11.780</td>
<td>0.1</td>
<td>22.7</td>
<td>452</td>
</tr>
<tr>
<td>9</td>
<td>7.100</td>
<td>2</td>
<td>29.3</td>
<td>422</td>
</tr>
<tr>
<td>10</td>
<td>11.100</td>
<td>2</td>
<td>32.9</td>
<td>424</td>
</tr>
<tr>
<td>11</td>
<td>6.400</td>
<td>5.4</td>
<td>34.3</td>
<td>310</td>
</tr>
<tr>
<td>12</td>
<td>3.000</td>
<td>3.3</td>
<td>32.4</td>
<td>384</td>
</tr>
<tr>
<td>13</td>
<td>21.400</td>
<td>70.8</td>
<td>38.5</td>
<td>400</td>
</tr>
<tr>
<td>14</td>
<td>9.420</td>
<td>0</td>
<td>19.3</td>
<td>426</td>
</tr>
</tbody>
</table>

WBC：総白血球数/μl, En：好酸球, plat：血小板数/μl, RBC：赤血球数×10^6/μl, Hb：ヘモグロビン（g/dl）, ANA：抗核抗体, DNA：抗DNA抗体, RNP：抗RNP抗体, Sm：抗Sm抗体, HB：HB Ag, CCR：クレアチニンクリアランス(ml/min), CPK：クレアチニホスホキナーゼ(U/l), CSF protein：脳脊髓液蛋白（mg/dl）。

それ、時に主症状となることもある。

今回我々は、肺総神経症状を施行した肺炎病およびその類縁疾患あるいは肺総神経症状検査または肺
生検より線維性血管炎が明らかとなった4例につい
て末梢神経障害の臨床所見と肺総神経症状検

およ
び肺生検の病理組織所見について検討したので

報告する。

対象および方法

肺炎病と類縁疾患あるいは肺総神経症状検査または

肺生検上、線維性血管炎を認めた14例を対象とし

E331
図1 感覚障害の分布

異常感覚あるいは感覚低下を示した領域、色の濃淡は障害の程度をあらわす。

た。その内訳は PN 5 例（1例は皮膚型 PN）、AGA 2 例、SLE 1 例、RA 2 例、橋本病 1 例、好酸球増多症 1 例、non systemic vasculitic neuropathy (NSVN) 1 例である。

これらを対象として臨床所見、末梢神経伝導検査、筋電図所見、腓腹神経および筋生検所見について検討した。

臨床所見は罹病期間、末梢神経障害発症の様式を、一般理学的所見として疼痛、浮腫、発熱の有無を、神経学的所見として筋力低下（0：正常、1：軽度障害、2：中等度障害、3：高度、4：機能消失）、筋萎縮の有無、感覚障害（表在覚および深部覚、0：正常～4：機能消失）、腱反射について検討した。

一般検査所見は血算、血清学的検査、免疫系、クレアチニンクリアランス（CCr）、CPK、髄液蛋白を検討した。

末梢神経伝導検査は運動神経（正中、尺骨、緑脛骨神経）、感覺神経（正中、尺骨、腓腹神経）について遠近位時、振幅（運動神経では複合筋活動電位、感覺神経では感覚神経活動電位）伝導速度について検討した。

腓腹神経生検では一般病理組織所見のほか有無および無酸神経線維密度、ときばくし法を行った。

筋生検は神経生検と同時に短期筋筋を採取し、凍結切片（HE, NADH, Gomori trichrome 染色、ATPase 染色）およびパラフィン切片（HE 染色）の所見を検討した。

結 果

1. 臨床所見（表1a, b）

罹病期間は皮膚型以外の PN と AGA では短く、末梢神経障害の発症様式も PN と AGA では急性発症が多くみられた。四肢の疼痛は全例でみられた。浮腫は 14 例中 8 例で伴い、発熱は 6 例でみられた。

神経学的所見では筋力低下や筋萎縮が明らかでない例が 5 例あった。表在感覚障害は全例で下肢優位にみられた。表在感覚障害の分布は手背下帯型あるいは手背下型の分布を示し、4 例では両側対称性で多発ニューロパチーヤー型の分布を呈した。多くは左右非対称性であり、多発単ニューロパチーヤーの分布を示した。顔面や体幹に表在感覚障害を認

—E332—
表 2 末梢神経伝導検査所見

<table>
<thead>
<tr>
<th></th>
<th>DL</th>
<th>Amp</th>
<th>CV</th>
<th></th>
<th>DL</th>
<th>Amp</th>
<th>CV</th>
<th></th>
<th>DL</th>
<th>Amp</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>case</td>
<td>Lt</td>
<td>Rt</td>
<td>Lt</td>
<td>Rt</td>
<td>Lt</td>
<td>Rt</td>
<td>Lt</td>
<td>Rt</td>
<td>Lt</td>
<td>Rt</td>
<td>Lt</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>NE</td>
</tr>
<tr>
<td>3</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>5</td>
<td></td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>4</td>
<td>NE</td>
<td></td>
<td>NE</td>
<td>NE</td>
<td></td>
<td></td>
<td></td>
<td>NE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2.7</td>
<td>2.75</td>
<td>11.5</td>
<td>6.97</td>
<td>51</td>
<td></td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>8.7</td>
<td>0.62</td>
<td>57</td>
<td>51</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2.72</td>
<td></td>
<td>67</td>
<td>56.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>NE</td>
</tr>
<tr>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>2.6</td>
<td>2.4</td>
<td>5.49</td>
<td>5.39</td>
<td>55.1</td>
<td>53.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>3.2</td>
<td>3.7</td>
<td>7.68</td>
<td>10.5</td>
<td>50</td>
<td>53.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>4.75</td>
<td>2.45</td>
<td>0.44</td>
<td>4.56</td>
<td>31.2</td>
<td>48.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3.3</td>
<td>3.3</td>
<td>19.6</td>
<td>21.1</td>
<td>54.8</td>
<td>54</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>control</td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>29</td>
<td></td>
<td>16.3</td>
<td>57.0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>0.3</td>
<td></td>
<td>5.3</td>
<td>3.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>DL</th>
<th>Amp</th>
<th>CV</th>
<th></th>
<th>DL</th>
<th>Amp</th>
<th>CV</th>
<th></th>
<th>DL</th>
<th>Amp</th>
<th>CV</th>
</tr>
</thead>
<tbody>
<tr>
<td>case</td>
<td>Lt</td>
<td>Rt</td>
<td>Lt</td>
<td>Rt</td>
<td>Lt</td>
<td>Rt</td>
<td>Lt</td>
<td>Rt</td>
<td>Lt</td>
<td>Rt</td>
<td>Lt</td>
</tr>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>NE</td>
</tr>
<tr>
<td>3</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>5</td>
<td></td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
<td>NE</td>
</tr>
<tr>
<td>4</td>
<td>NE</td>
<td></td>
<td>NE</td>
<td>NE</td>
<td></td>
<td></td>
<td></td>
<td>NE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>2.62</td>
<td>2.48</td>
<td>6.09</td>
<td>7.87</td>
<td>53.4</td>
<td>56.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>NE</td>
<td>0.7</td>
<td>NE</td>
<td>61</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>2.76</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>NE</td>
</tr>
<tr>
<td>9</td>
<td>NE</td>
</tr>
<tr>
<td>10</td>
<td>2.28</td>
<td>2.32</td>
<td>13.4</td>
<td>6.86</td>
<td>59.2</td>
<td>60.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>NE</td>
</tr>
<tr>
<td>12</td>
<td>NE</td>
</tr>
<tr>
<td>13</td>
<td>NE</td>
<td>5</td>
<td>NE</td>
<td>0.03</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>5.19</td>
<td>NE</td>
<td>50</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>control</td>
<td></td>
</tr>
<tr>
<td>mean</td>
<td>2.1</td>
<td></td>
<td>19.9</td>
<td>5.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SD</td>
<td>0.3</td>
<td></td>
<td>5.4</td>
<td>5.28</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DL：distal latency (ms)，Amp：amplitude（運動神経では複合筋活動電位 mV，感覚神経では感覚神経活動電位 μV），CV：conduction velocity (m/sec)，NE：not evoked は M 波または感覚神経活動電位が導出できなかったことを示す。

めののはそれぞれ1例のみであった（図1）。
深部感覚障害は表在感覚障害に比べて軽度であり、障害のない例も4例あった。
血液検査所見ではCRP陽性はPNとAGAおよびSLEのそれぞれ1例でみられた。観血蛋白は検索した12例中2例のみが上昇していた。

2. 末梢神経伝導検査所見（表2）
末梢神経伝導検査では運動神経は特にPN1例とSLE1例で正中神経の複合筋活動電位が導出不能な例があり、総脛骨神経はPN4例、AGA1例、SLE1例で導出不能であった。測定可能であった神経では伝導速度は正常であっても複合筋活動
表3 腎臓神経生検所見

<table>
<thead>
<tr>
<th></th>
<th>vasculitis</th>
<th>multifocal change</th>
<th>MFD</th>
<th></th>
<th>UFD</th>
<th>teased fiber</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>large</td>
<td>small</td>
<td>total</td>
<td>A</td>
</tr>
<tr>
<td>1</td>
<td>-</td>
<td>+</td>
<td>2.318</td>
<td>2.534</td>
<td>4.834</td>
<td>1.905</td>
</tr>
<tr>
<td>2</td>
<td>+</td>
<td>-</td>
<td>478</td>
<td>7.707</td>
<td>8.185</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>+</td>
<td>-</td>
<td>1.408</td>
<td>3.280</td>
<td>4.788</td>
<td>30.706</td>
</tr>
<tr>
<td>4</td>
<td>+</td>
<td>-</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>2.858</td>
</tr>
<tr>
<td>5</td>
<td>+</td>
<td>+</td>
<td>1.063</td>
<td>7.849</td>
<td>8.912</td>
<td>21.282</td>
</tr>
<tr>
<td>6</td>
<td>-</td>
<td>+</td>
<td>2.976</td>
<td>5.452</td>
<td>8.428</td>
<td>35.914</td>
</tr>
<tr>
<td>7</td>
<td>-</td>
<td>+</td>
<td>644</td>
<td>4.505</td>
<td>5.149</td>
<td>25.533</td>
</tr>
<tr>
<td>8</td>
<td>+</td>
<td>-</td>
<td>63</td>
<td>491</td>
<td>554</td>
<td>*</td>
</tr>
<tr>
<td>9</td>
<td>-</td>
<td>+</td>
<td>1.455</td>
<td>2.593</td>
<td>4.048</td>
<td>18.805</td>
</tr>
<tr>
<td>10</td>
<td>+</td>
<td>-</td>
<td>128</td>
<td>1.718</td>
<td>1.846</td>
<td>50.310</td>
</tr>
<tr>
<td>11</td>
<td>-</td>
<td>+</td>
<td>2.398</td>
<td>4.256</td>
<td>6.654</td>
<td>16.878</td>
</tr>
<tr>
<td>12</td>
<td>-</td>
<td>-</td>
<td>100</td>
<td>2.311</td>
<td>2.411</td>
<td>9.577</td>
</tr>
<tr>
<td>13</td>
<td>+</td>
<td>+</td>
<td>758</td>
<td>1.966</td>
<td>2.722</td>
<td>3.740</td>
</tr>
<tr>
<td>14</td>
<td>+</td>
<td>+</td>
<td>1.969</td>
<td>7.113</td>
<td>9.082</td>
<td>17.576</td>
</tr>
<tr>
<td>control</td>
<td>mean</td>
<td></td>
<td>3.439</td>
<td>4.761</td>
<td>8.200</td>
<td>26.433</td>
</tr>
<tr>
<td>SD</td>
<td></td>
<td></td>
<td>447</td>
<td>470</td>
<td>733</td>
<td>11.870</td>
</tr>
</tbody>
</table>

MFD：有髓神経密度，UFD：無髓神経密度，有髓および無髓神経密度はnumbers/mm²。
ときほぐし線維（％）はA：正常、C：節性脱髓、D：節性脱髓と再髓鞘化、E：軸索変性、
F：再髓鞘化。*：測定不能。

図2 症例3の腎臓神経生検（パラフィン切片、HE染色）

神経上膜の小動脈から細動脈まで径の異なる血管に炎症性細胞浸潤を認める。神経上膜中心の小動脈では全層性の細胞浸潤、フィブリノイド壊死、内腔の閉塞、内弾性板の断裂など壊死性血管炎の所見がみられる。

—E334—
図3a：症例2の腸間神経 (****: エボン包埋，トルイジンブルー染色，barは20μm)
ほとんど角質細胞が脱落し，腺球やマクロファージが散見される。

図3b：症例2の短腸骨筋生検(パラフィン切片，HE染色，barは50μm)
筋上皮の小動脈の壊死性血管炎を示す。

電位の振幅の低下が高頻度にみられた。

感覚神経では運動神経より活動電位の導出不能例が多く，特に下肢の感覚障害は全例でみられており，脳腹神経活動電位は3例を除いて導出不能であった。評価可能な感覚神経でも運動神経と同様に伝導速度は正常であっても活動電位の振幅の低下がみられた。

3. 腸間神経・短腸骨筋生検所見

腸間神経組織内の壊死性血管炎は8例にみられ，神経上膜中央の小動脈を主体として血管壁全層における炎症性細胞浸潤と内弾性板の断裂やフィブリノイド壊死を伴っていた（表3）。

PNで広範な血管炎を認めた例では神経上膜の径の異なる動・静脈に細胞浸潤，内腔の狭窄や閉塞などがみられた（図2）．一方神経内臓内部の血

管周囲には細胞浸潤や血管炎の所見はみられなかった。有髄神経線維の障害の程度は症例により異なり，変異が高度な例では有髄神経線維が殆ど脱落していた（図3a）．また変異の多様性分布は8例でみられた（図4）．変異の主体は軸索変性であったが，ときほくし法では3例で低頻度の脱髄
図 5a 有髄神経線維密度および直径分布ヒストグラム（説明本文）
図 5b 無痛神経線維密度および直径分布ヒストグラム（説明本文）
性変化を伴っていた。
神経線維の直経他には小径線維に比べて大径線維の脱落の目立つ例が多くあった（図3a）。無髓線維の症例により障害の程度が異なるが、有髓線維が脱落している例においても無髓線維は比較的保たれる傾向があった（図3b）。
筋生検は腓腹神経生検時に全例で短腓骨筋生検を施行した。壊死性血管炎は7例の筋上膜内の小動脈、細動脈にみられた（図3b）。腓腹神経での壊死性血管炎が明らかでない例で筋生検上血管炎を認めた例は2例あった。筋病理所見は臨床的に筋力低下が明らかでない例も含め全例で神経原性変化と筋原性変化変化を認めた。また9例でtype 2萎縮を選めた。
考察
血管炎に伴う末梢神経障害の発症様式は典型的には単ニューロパチーが順次強くしていくと考えられる。本検討においては大多数の例がその様式で発症し、感染障害の分布は非対称的であった。特にPNやAGAなど急性あるいは亜急性に発症する例では病歴から多発性単ニューロパチーであることは容易に予測できる。しかし、症例4のように高齢者や慢性の経過をとる皮膚型PNやSLEなどでは、感染障害の分布が一見多発ニューロパチーのようにみえることがある。また血管炎性ニューロパチーで約20%の例で病初期から四肢遠位部優位の多発ニューロパチーの分布を呈する例も報告されている3）この機序として末梢神経の血管支配と循環動態により大腿中央部と上腕中央部に血管のwatershed zoneができやすいことが推測されている4）。
血管炎性ニューロパチーの発現機序として虚血性変化が想定されている5）その根拠として本検討でもみられたような多巣性の病変や、末梢神経伝導検査における振幅の低下や導出不能などの軸索変性を示す所見、病理所見上の軸索変性像などが虚血の実験モデルの所見に合致することがあげられる。また実際に血管炎の結果、血管内腔の閉塞や狭窄所見もみられ虚血性変化を支持する根拠となっている。
血管炎性ニューロパチーにおける障害を受けやすい神経線維については諸説があるが5），本検討では無髓線維は有髓線維に比べて虚血に対して抵抗性であることが示唆された。
血管炎性ニューロパチーはその背景となる疾患により発症の様式や神経障害の程度に多様性があるが病理学的変化や電気生理学的所見には虚血性変化としての共通性がある。しかし虚血以外に免疫学的手法が背景疾患によって異なることが次第に明らかとされつつあり3），今後さらに症例を蓄積して検討すべきである。
結語
血管炎性ニューロパチー14例について臨床所見、末梢神経伝導検査、腓腹神経・短腓骨筋生検所見について検討した。
1）臨床経過はPNでは皮膚型PNをのぞき発症から末梢神経障害が発現するまでの経過が短く、他の臓器病では長かった。
2）末梢神経障害の分布は臨床症状および末梢神経伝導検査の所見から多発性単ニューロパチーの分布が主体であった。
3）末梢神経伝導検査では上肢では導出不能であることが多く、特に感染神経では顕著であった。
4）末梢神経伝導検査が評価可能な例では伝導速度は正常で振幅の低下すなわち軸索変性を反映する所見が主体であった。
5）脳神経症状を呈した例は1例のみであった。
6）腓腹神経生検所見では著明な有髓線維密度の減少、活動性の軸索変性、多巣性の変化などがみられた。
7）筋生検所見では神経原性変化が最も多くみられ、その他筋原性変化の混在とtype 2線維萎縮も比較的多くみられた。
文献
1）竹内 恵：血管炎性ニューロパチーの発現機序。神経進歩 41: 241-251, 1997
2）竹内 恵：血管炎性ニューロパチーの病態と治療。日内会誌 87: 629-638, 1998
4）Dyck PJ, Conn DL, Okazaki H: Necrotizing angiopathic degeneration related to sites of oc-