Euthyroid Graves’ disease 患者血清より得られた IgG のヒト甲状腺濁胞
浮遊培養系における甲状腺ホルモン分泌刺激活性

1 金地病院甲状腺病研究所
2 東京女子医科大学内分泌センター内科（主任：高野加寿恵教授）
3 東京女子医科大学大学院内科系病態治療学（甲状腺・副甲状腺）分野
山田憲美1・山崎 和子1・山田 哲4 佐藤 幹二2,3・高野加寿恵2

(受理 平成 20年10月27日)

Immunoglobulin G Obtained from Patients with Euthyroid Graves’ Disease Elicits Thyroid Hormone-Releasing Activity in Cultured Human Thyroid Follicles

Emiko YAMADA1, Kazuko YAMAZAKI1, Tetsu YAMADA1, Kanji SATO2,3 and Kazue TAKANO1

1 Thyroid Disease Institute, Kanaji Hospital
2 Department of Medicine (Director: Prof. Kazue TAKANO), Institute of Clinical Endocrinology, Tokyo Women’s Medical University
3 Field of Pathophysiology and Treatment for Thyroid and Parathyroid Diseases Division of Internal Medicine, Graduate School of Medicine, Tokyo Women’s Medical University

Graves’ disease is characterized by goiter, palpitation and exophthalmus (Merseburg’s trias). However, a few patients develop exophthalmus although their thyroid function is normal, and these patients were named as euthyroid Graves’ disease (EGD). It remains unknown why these patients are euthyroid, although they have potent thyroid-stimulating antibody (TSAb). To investigate whether the immunoglobulins (IgGs) obtained from EGD patients elicits thyroid hormone-releasing activity (THRA), thyroid follicles obtained from Graves’ patients were cultured in suspension in agarose-coated culture dishes, and organic 3H-T3 + 3H-T4 released into the culture medium were determined. IgGs obtained from normal subjects (N = 6) and Graves’ patients in complete remission (N = 14) had no significant THRA. IgGs obtained from hyperthyroid Graves’ disease (HGD: N = 14) has potent THRA equivalent to human TSH (1004 ± 1634 μU/ml). This was also the case in patients with EGD (N = 4). There was no significant differences between HGD and EGD. These findings suggest that IgGs obtained from patients with EGD have potent THRA in vitro, however, in vivo, their IgGs are unable to elicit their biological activity in the thyroid gland. Presumably, immunocompetent cells are infiltrated into their thyroid gland, and inflammatory cytokines produced by them synergistically exert inhibitory effect on thyroid function.

Key words: euthyroid Graves’ disease, immunoglobulin G, thyroid hormone-releasing activity, thyroid-stimulating antibody (TSAb), thyroid follicles

緒 言
パセドウ病は、Merseburg の Trias（甲状腺腫、動悸、眼球突出）を主徴とする自己免疫性の甲状腺機能亢進症である1、パセドウ病では、刺激性の TSH 受容体抗体が産生されることにより、TSH 受容体が長期間にわたり過剰に刺激されているため、甲状腺機能亢進症となる（hyperthyroid Graves’ disease; HGD）。しかし、ごく一部のパセドウ病患者では、甲状腺機能が正常（euthyroid）であるにもかかわらず、眼球突出が生じることがあり、古くから euthyroid
Graves’ disease（EGD）として知られている。EGDではHGDとは異なり、発汗過多、動悸、頻脈、体重減少なは認められず、目の痛みや後視を訴えて、最初は眼科を受診することが多い。このようなEGD患者では、通常thyroid-stimulating antibody（TSAb）、TSH receptor antibody（TRAb）が陽性である。サイログラブリン抗体やthyroid peroxidase（TPO）抗体も陽性であることが多い。MRI検査により、外眼筋の肥大又は後眼窩の脂肪組織が肥大していることが確認できれば、EGDの診断が確定的となる。

そこで、甲状腺細胞のTSH受容体を刺激してsecond messengerであるcyclic AMP産生刺激作用のあるTSAbが弱〜強陽性であるにもかかわらず、本症患者では甲状腺ホルモンの分泌が正常であるのは、真に不思議なことである。そこで、TSAbおよびTRAb陽性のHGD患者およびEGD患者よりIgGを抽出し、ヒト甲状腺滤胞の浮遊培養系を用いて、B型甲状腺細胞の浮遊培養系に添加してTSH受容体を刺激されて産生されるsecond messenger（cyclic AMP）を測定するものである。TSH受容体の刺激活性を測定しているが、測定感度が不十分なため、当院でのパセドウ病の陽性率は90%である。正常値は180%以下である。

5）TRAb

種々のTRAbが市販されているが、当院ではDYNOnote TRAb Humanキット「ヤマサ」の測定キットを用いている。本法はTSH受容体の刺激活性を検討するものではなく、TSHのTSH受容体への結合阻害率を検討するものである。ヒトのTSH受容体を使用しており、TSH標識TSHの結合の阻害率を測定するradioreceptor assayである。正常値は10%以下である。最近、極めて高薬となり、当院でのパセドウ病での陽性率は99%である。

6）TPO抗体

化学発光免疫測定法を用しており、正常値は50U/ml以下である。
7) THRA 測定法
①ヒト甲状腺機能の作製法
甲状腺全摘術の予定された HGD 患者より、手
術前日までに、文書にて説明して informed consent
を得た（東京女子医科大学倫理委員会承認番号
710）。甲状腺全摘術時に得られた甲状腺組織の一
部（10〜20g）を Hanks 液に浸したまま実験室に運
び、既に報告した方法を用いて甲状腺機能を分離し
た（9〜10）。
② IgG の精製法
患者血清 3ml を Protein-A カラムにかけ glycine-
HCL buffer (0.1M, pH 3.5) にて IgG 分画を導出し、
pH を 7.0 に調整後、透析膜（Spectra/por mem-
brane。Spectrum Laboratories）に 6ml で挿入し、
0.9％NaCl 溶液（2L）にて 2 回透析した。その後、
10⁻⁴M の NaI を含む F12/RPMI 培養液（2L）にて透
析し、Millipore filter を通じたのち、4℃ にて保存
した。
③ THRA 測定法
甲状腺機能をおよそ 400 個/ml になるように培養
液中に再浮遊させ、あらかじめアガロースを塗布し
た 24 穴ディッシュに 1ml ずつ入れて、95%air+5% CO₂
の incubator 中にて数日間培養した。アガローソ
スを塗布された甲状腺機能は培養ディッシュに接着
することができず、濁剤構造を維持したまま浮遊状
態で培養される（10）。
数日後に、培養液を交換したのち、ウシ TSH
（bTSH）または正常人またはパセドウ病患者より精
製した IgG を添加した後、⁻¹¹¹I を 1 ディッシュあたり
15,000〜20,000cpm になるように添加し、さらに 3
日間培養した。
3 日後に、浮遊している甲状腺機能を培養液ごと
試験管に移した後、3,000rpm、10 分遠心し、上清を
別の試験管に移した。さらに、この培養上清に血清
0.2ml を添加後、15％TCA 液を 1ml 添え前、vortex
にて短く混和したのち、3,000rpm で 10 分遠心し、上
清を吸引除去した。その後、生理食塩水にて、甲状腺
機能を含んだ試験管を TCA による沈澱物を含ん
d試験管を洗浄し、甲状腺機能に含まれた⁻¹¹¹I およ
び TCA 沈澱物中の⁻¹¹¹I を gamma-counter にて測定
した。なお、甲状腺機能中に含まれた⁻¹¹¹I は monoiodoty-
rine, diiodotyrosine, T3, T4 などの有機化された
⁻¹¹¹I であり、培養液中に分離された⁻¹¹¹I（TCA による
沈澱物）は de novo に合成・分泌された⁻¹¹¹I-T3,⁻¹¹¹I-
T4 を薄層クロマトグラフィーにて確認
している（9〜10）。
甲状腺ホルモン分泌活性（THRA）は、bTSH を標
準物質として検定曲線を描き、THRA 活性が弱い場
合には、甲状腺機能内に取り込まれた⁻¹¹¹I にて比較
した。また THRA 活性が強力な場合には、培養液中
に分泌された⁻¹¹¹I で比較して、bTSH equivalent な値
として表現した。なお、bTSH は hTSH よりも、こ
のバイオアッセイ系では 6 倍ほど強力であるので
て、検定曲線から得られた bTSH の THRA を 6
倍したものが、hTSH に換算した THRA となる。
8) 培養甲状腺機能の形態学的観察
甲状腺機能を上述のごとく bTSH を無添加または
添加（30μU/ml）にて 7 日間培養し、Karnovsky 固定
液で固定してレジンに包埋し、酢酸ウランとクエン
酸鉱にて染色後、日立の電顕（Hitachi H7100 trans-
mision electron microscope）にて微細構造を観察し
た（10）。
9) 続計処理
HGD 群と EGD 群の THRA は、Student's t test
にて検定した。また 3 群以上を比較するときには多
重比較法にて検定した。p<0.05 を有意差ありと判定
した。
結果
1. THRA 測定法の基礎的検討
1) 培養開始後に⁻¹¹¹I を添加する時期の検討
甲状腺機能の浮遊培養を開始して、1, 3, 5, 7, 9 日
目に培養液を変更し、⁻¹¹¹I を添加後、さらに 3 日間は
と培養してから、甲状腺機能に取り込まれた⁻¹¹¹I、お
よび培養液中に分泌された有機⁻¹¹¹I を検討した。図 1
に示すように bTSH を添加しないで培養すると、甲
状腺機能内で取り込まれた⁻¹¹¹I は短時間に減少し
た。bTSH を添加すると甲状腺ホルモンに取り込ま
れた⁻¹¹¹I および有機⁻¹¹¹I の培養液中への分泌が濃度
依存性に増加した。短時間に検討すると、培養 7 日
後に⁻¹¹¹I を添加した場合に、最も濃度のよい THRA
が検出された。
2) 培養甲状腺機能の個数が THRA に及ぼす検討
甲状腺機能をよく 100, 200, 400, 800, および
1,600 個になるように 24 穴ディッシュに入れて、7
日間培養後、⁻¹¹¹I を添加し、さらに 3 日間培養後に、
THRA を検討した。図 2 に示すように甲状腺機能数
が 400 個前後のときが最も高感度であることが明ら
かになった。
3) 培養甲状腺機能の電顕像
培養された甲状腺機能は、濁剤構造を維持したま
bTSH濃度（μU/ml）

図1 125Iを添加するまでの培養日数の検討
甲状腺細胞を1、3、5、7、および9日培養したのち125Iを各々の培養液に～30,000cpm添加し、さらに3日間培養後、甲状腺細胞に取り込まれた125I（カラム）および培養液中に分泌された有機125Iを測定した。データはmean ± SD（N = 4）、有機125Iの分泌：* p < 0.01、** p < 0.001。

考察

パセドウ病とは、患者血中に存在するIgGが甲状腺細胞膜に発現しているTSH受容体を非特異的に刺激する結果、甲状腺ホルモン合成と分泌が亢進し、甲状腺機能亢進（hyperthyroid）となる病態である。実際、HGD患者よりIgGを抽出し、このパイオアッセイ法にてTGRAを検討すると、100％陽性となる。または、未治療のHGD患者のTGRAはbTSHに換算して4.6μU/ml以上であることも判明している。一般に健康人の血中TSH濃度は0.4～4.0μU/mlであるので、TSH受容体が常に過剰に刺激されているパセドウ病患者では甲状腺機能亢進症が必発してくる。

今回、EGD患者血清より得られたIgGをこのパイオアッセイ系を用いて検討したところ、4例中4例に明らかにTGRAが認められた。HGD患者をEGD患者から得られたIgGを比較すると、TGRAには有意差認められなかった（p>0.1）。つまり、EGD患者のTSAβは、HGD患者のTSAβのごとく、in
図2 甲状腺漿胞数のTHRAに及ぼす影響
甲状腺漿胞を各wellあたり、100、200、400、800、および1,600個ほど入れて7日間ほど培養後、\(^{125}\)Iを各々の培養壺に～30,000cpm添加し、さらに3日間培養後、甲状腺漿胞に取り込まれた\(^{125}\)I（カラム）、および培養液中に分泌された有機\(^{125}\)I（○）を測定した。データはmean ± SD(N = 4)。\(^{125}\)Iの甲状腺漿胞への取り込み：* p < 0.05、** p < 0.01、*** p < 0.001、有機ヨードの培養液中の分泌：+ p < 0.05、++ p < 0.001。+++ p < 0.001。

図3 TSHを無添加または添加して培養した時の甲状腺漿胞の微細構造
（左）bTSHを添加せずに7日間培養したときの甲状腺漿胞。
（右）bTSH（30μU/ml）を添加して7日間培養したときの甲状腺漿胞。
甲状腺漿胞内に多数のmicrovilliが突出しているのが認められる。
M：培養液、FL：甲状腺漿胞腔。

vitroではcyclic AMPの産生を促進するのみならず、THRAを発揮することが判明した。したがって、EGD患者では甲状腺がTSAblに反応しうる病態となっているため、甲状腺ホルモンが十分に分泌されず、甲状腺機能が正常に保持されているものと推測された。

EGD患者の甲状腺がTSAblに反応しうるのは、おそらく甲状腺に様々な免疫担当細胞が浸潤しており、様々な炎症性サイトカイン（IL-1, TNF-α, IL-6, IFN-α, IFN-β, IFN-γ）が局所的・産生され
図4 パセドウ病患者と正常人のTHRA
正常人およびパセドウ病患者の血清よりIgGを抽出して、甲状腺癌の浮遊培養系に添加し、7日間培養後、{superscript}125{/superscript}Iを添加して、さらに3日間培養後、甲状腺癌に取り込まれた{superscript}125{/superscript}I（カラム）および培養液中に分泌された有機{superscript}125{/superscript}I（●）を測定した。
bTSH：ウシTSH、Normal IgG：正常人より抽出したIgG、Graves’ IgG：未治療のHGD患者より抽出したIgG。データはmean ± SD（N = 4）。* p < 0.05, ** p < 0.01, *** p < 0.001。

図5 正常人、HGD患者およびEGD患者より得られたIgGのTHRA
正常人（6例）、HGD患者（14例）の治療前および自然経過状態となった時（N = 14）、およびEGD患者（4例）の血清よりIgGを抽出して、甲状腺癌の浮遊培養系に添加し、7日間培養後、{superscript}125{/superscript}Iを添加して、さらに3日間培養後、甲状腺癌に取り込まれた{superscript}125{/superscript}I（カラム）、および培養液中に分泌された有機{superscript}125{/superscript}I（●）を測定した。THRAは、左側はbTSHに換算した値。右側はbTSHに換算した値で示している。東京女子医科大学病院内分泌内科でのバイオアッセイ条件では、bTSHの生物活性はbTSHより6倍ほど強力である。
ND：測定感度以下。
いるためと推測される。なお、これらの炎症性サイトカインが単独で、または相乗的に作用して甲状腺ホルモン合成・分泌を抑制することは、このバイオアッセイ系を用いて報告済みである(10-12)。これらのサイトカインは、TSH受容体を発現させ、sodium-iodide symporter はじめ、TPO やサイログロブリンの mRNA の発現を減少させることも cDNA microarray を用いて明らかとなっている。

以上のことを考え、EGD 患者では TSHb が過剰に存在しているにもかかわらず、甲状腺が反応できない状態となっており、いわば euthyroid となっていいるバセドウ病患者とはほぼ同様な病態であることが明らかになった。

結論
甲状腺機能が正常なバセドウ病 EGD 患者 6 例より精製された IgG をヒト甲状腺過酸化物酵素の浮遊培養系にて THRA を検討したところ、全例とも陽性であり、hTSH に換算して 80.6 ± 90.2 μIU/ml に相当した。

正常人および自然発症のバセドウ病患者では全例 THRA は陰性であった。EGD 患者と通常の甲状腺機能亢進症を呈するバセドウ病患者の THRA には有意差が認められなかった。したがって、EGD 患者の甲状腺は TSHb に反応しない状態になっていると推測された。その成因として、おそらく炎症性サイトカインを産生する免疫担当細胞が甲状腺内に浸潤しており、これらのサイトカインは相乗的に作用して甲状腺機能を抑制的に作用するためと推定された。

謝辞
バセドウ病甲状腺を提供していただいた東京女子医科大学内分泌センター外科小原孝男教授に深謝いたします。また、電顕像の観察を御指導していただいた小坂 誠一氏（総合研究所）に深謝いたします。

文献
1) 長瀬重信：バセドウ病。分冊「内科学」内分泌疾患（鎌田哲夫編）、pp163-185、講談堂、東京都（1979）
4) 井上洋一：バセドウ病眼瞼の診断と治療、「よくわかる甲状腺疾患のすべて」(伴良雄編)、pp109-118、永井書店、大阪府（2003）
6) Sato K, Yamazaki K, Yamada E et al: Immunoglobulin G of untreated Graves' patients with or without TSH receptor antibody (determined by porcine thyrotropes) universally elicit potent thyroid hormone-releasing activity in cultured human thyroid follicles. Thyroid 9: 979-988, 1999
9) Yamada E, Yamazaki K, Takano K et al: Iodide inhibits vascular endothelial growth factor (VEGF)—A expression in cultured human thyroid follicles: a microarray search for effects of TSH and iodide on angiogenesis factors. Thyroid 16: 545-554, 2006
11) 東田薫雄，中村武志，石毛啓幸ほか：甲状腺刺激性自己抗体測定キットの開発，ホルモンと臨床 41: 1023-1030, 1993
16) Yamazaki K, Yamada E, Kanaji Y et al: Interleukin-6 (IL-6) inhibits thyroid function in the presence of soluble IL-6 receptor in cultured human thyroid follicles. Endocrinology 137: 4857-4863.

