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CHAPTER 3 

The Mechanisms of Telomere and Telomerase Regulation in 
Hematologic Malignancies 
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Abstract: Human chromosome ends are capped by telomeric DNA composed of long 
arrays of (TTAGGG)n repeats. During each cell division, telomeric DNA is shortened 
by 50-100 bp. This attenuation of chromosome ends results in a loss of coding 
sequences and end-to-end chromosomal fusions, leading to chromosomal instability and 
aberrations. Therefore, telomere shortening is a critical event that acts as a mitotic clock 
to measure cellular life span. Telomerase, a ribonucleoprotein composed of a catalytic 
subunit (TERT), an RNA template (TERC), and the dyskerin protein, elongates 
telomeric sequences in germ cells and immature precursors such as hematopoietic stem 
cells. Telomerase is activated by multiple signaling pathways and its activity is 
regulated at the levels of gene transcription and translation, as well as post-translational 
modifications, trafficking, and assembly of the protein. Telomerase is upregulated in 
most cancer cells, including hematologic malignancies. Telomere shortening and 
telomerase activation are correlated with the prognosis and aggressiveness of various 
hematologic tumors. Therefore, targeting telomerase may be an attractive therapeutic 
strategy for hematologic malignancies. In fact, several strategies of telomerase 
inhibition, such as G-quadruplex-interacting agents, catalytic/reverse transcriptase 
inhibitors, oligonucleotides, and immunotherapy, have been developed as therapeutic 
methods. 
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1. INTRODUCTION 

In the 1930s, McClintock [1] and Muller [2] independently reported that the ends 
of chromosomes play a crucial role in protecting these structures against end-to-
end fusion and breakdown during mitosis. Muller was the first to use the term 
“telomere”, taken from the Greek words telos (meaning “end”) and meros 
(meaning “part”) to describe the special structure of chromosome ends. In the 
1960s, Hayflick [3, 4] discovered that human fibroblasts stop dividing when 
cultured serially; this phenomenon is known as replicative senescence and the 
stage at which cell division stops is termed the Hayflick Limit, or M1. 
Subsequently, Watson [5] described the “end replication problem”, which is 
caused by the inability of DNA polymerase to fill the gaps at the far ends of 
newly formed DNA strands during replication of a linear duplex. In 1973, 
Olovnikov [6] went on to suggest that chromosome-end shortening caused by an 
inability of somatic cells to compensate for chromosome loss would result in 
telomere shortening and hypothesized that the length of the DNA repeat sequence 
at chromosome ends might limit the number of times that a cell can replicate 
before entering senescence (known as the mitotic clock). In contrast to somatic 
cells, germline cells and stem cells are able to maintain the length of telomere 
ends via the elongating activity of telomerase, which was first discovered in 
Tetrahymena thermophilia extracts by Greider and Blackburn in 1985 [7]. When 
telomere ends reach a critical length, permanent growth arrest can be triggered by 
inducing cell cycle inhibitors such as p53; however, cells can continue to 
proliferate by inactivating p53, resulting in a further loss of telomere length and 
entry into a second proliferative lifespan crisis (M2), which is associated with 
genomic instability and cell apoptosis [8, 9]. Rare cells can escape from this crisis 
and become immortalized by activating telomerase or, in some cases, by utilizing 
an alternative telomere lengthening mechanism [10]. Telomerase activation 
occurs in almost 90% of cancerous cells [11]; therefore, telomeres and telomerase 
are believed to play an important role in the regulation of cellular senescence and 
carcinogenesis. Telomere stabilization and upregulation of telomerase have been 
implicated in the pathogenesis and clinical prognosis of hematologic malignancies 
[12-20]. Here, we discuss the roles of telomeres and telomerase in hematopoietic 
cells and their tumors, and consider potential strategies for clinical diagnosis and 
therapy. 
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2. STRUCTURE AND FUNCTION OF TELOMERES 

About 50 years ago, Leonard Hayflick [3, 21] discovered that cultured normal 
human cells have a limited capacity for division, after which they become 
senescent. Hayflick and Moorhead [3, 21] cultured three separate populations of 
human fibroblasts simultaneously: one was derived from a male at population 
doubling level 14 (PDL14); another was derived from a female at PDL10; the 
third was a mixed population initially containing an equal number of male PDL14 
and female PDL10 fibroblasts. When the unmixed male-derived PDL14 cell 
population stopped dividing, they discovered that the mixed population (which 
was cultured simultaneously) contained only female cells. Besides providing 
additional evidence that cells have a limited lifespan, this experiment 
demonstrated that older cells ‘remembered’ that they were old, even when 
surrounded by younger cells. Hayflick [22, 23] also made the important 
observation that cryo-preserved cells ‘remembered’ the number of times they had 
divided before they were frozen and stored. These experiments suggest that a 
counting mechanism is programmed into each cell, and that the cell stops dividing 
once this biological clock runs out. In commemoration of Hayflick’s discovery 
that human cells have a finite lifespan, the term “Hayflick limit” is sometimes 
used to describe the maximum number of times that a cell can divide. Senescence, 
the withdrawal of a cell from the cell cycle after a certain number of divisions, can 
be triggered by shortened telomeres. Studies of replicative senescence have 
contributed greatly to our understanding of aging and created new opportunities in 
the area of regenerative medicine. Cancer cells evolve the ability to overcome 
senescence by exploiting mechanisms that maintain telomere length (e.g., 
telomerase expression), thereby acquiring the ability to divide indefinitely. 

2.1. Telomere Structure 

2.1.1. Telomeric DNA 

Telomeres are repetitive nucleotide sequences present at each end of eukaryotic 
chromosomes [24]. Telomeric DNA sequences are highly conserved in all well-
characterized eukaryotic nuclear chromosomes, and are quite different from the 
terminal sequences of linear viral, extra-nuclear plasmid, or mitochondrial DNAs. 
Human telomeric DNA comprises 2-15 kb of a tandemly repeated sequence, 
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protected by the shelterin complex, which contains telomere-repeat-binding factor 1 
(TRF1), TRF2, human repressor activator protein 1 (RAP1), TPP1 (also known as 
TINT1/PTOP/PIP1), protection of telomeres 1 (POT1), and TRF1-interacting 
nuclear protein 2 (TIN2) (Table 1) [31-33]. TRF1 and TRF2 bind to double-
stranded telomeric DNA and anchor shelterin along the telomere repeats [34-36].  
 
Table 1: Components of the telomere complex 

Components Roles 

Shelterin Complex  

Telomere-repeat-binding 
factor 1 (TRF1) 

Binding to double-stranded telomeric DNA and folding telomere, 
resulating in prevention of the elongation of telomeres. 

Telomere-repeat-binding 
factor 2 (TRF2) 

Binding to double-stranded telomeric DNA and stabilizes telomere ends 
by mediating T-loop formation. 

Repressor activator protein 1 
(RAP1) 

Interacts with TRF2 and enhances its affinity for telomeric 3’ ends. 

TRF1-interacting nuclear 
protein 2 (TIN2) 

Serves as the hub of the complex linking TRF1 and TRF2 and Promotes 
T-loop formation. 

Protection of telomeres 1 
(POT1) 

Interacts with TPP1 and protects single-stranded G-rich DNA overhangs 
from the DNA-damage response. 

TINT1/PTOP/PIP1 (TPP1) Recruits POT1 and modulates telomere function by negatively or 
positively regulating telomerase processivity. 

Tankylase 1 (TANK1) Poly (ADP-ribosyl)ates TRF1, resulting in its release from telomeric DNA 
and increased telomerase access to the telomere. 

POT1 binds to the single-stranded G-rich DNA overhang [37-39]. TIN2 serves as 
the hub of the complex linking TRF1 and TRF2 [40, 41], and also recruits POT1 
to the complex via TPP1 [38, 41, 42]. RAP1 associates with the telomere protein 
complex via its interaction with TRF2 [43, 44]. These telomere-specific protein 
complexes are found in many eukaryotes, indicating their importance for telomere 
function [45]. In humans, the shelterin proteins regulate telomere length and 
telomere capping. POT1 and TPP1 form a heterodimer and modulate telomere 
function by negatively regulating telomerase access to the 3’-overhang or by 
serving as a telomerase-processing factor during telomere extension [46-49]. 
Although TRF1 and TRF2 bind to double-stranded telomere DNA and are closely 
related to each other, the results of structural analyses indicate that they recruit 
different proteins to telomeres to facilitate distinct functions [50, 51]. TRF1 
negatively controls telomere length via a length-dependent counting mechanism, 
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in which the interaction between POT1/TPP1 and TRF1 allows communication 
between double-stranded telomeres and telomerase [52]. On the other hand, TRF2 
and POT1 are essential for the formation or regulation of the telomeric T-loop 
structure, which masks chromosome ends and prevents them from evoking a 
DNA damage response or undergoing recombination [53] (Fig. 1B). 

2.2. Telomeric Loss in Somatic Cells 

Because DNA polymerase cannot completely replicate linear DNA molecules, 
early models predicted that terminal sequences would be lost from the 
chromosomes during each round of replication [5, 6, 54]. According to our current 
understanding of DNA replication, the polymerase that copies the DNA strands 
prior to each cell division absolutely requires a short RNA primer sequence to 
begin DNA polymerization in the 5' to 3' direction. After DNA polymerization, 
the RNA primers are degraded and replaced by DNA synthesized from an 
upstream 3’ DNA end. However, the gaps resulting from degradation of the 
primers annealed to the extreme 3' end of each strand cannot be filled in this 
manner. Therefore, over multiple cycles, this replication strategy results in 
progressive shortening of chromosomes at both ends (Fig. 2A). This loss of 
genetic material is predicted to contribute to senescence by limiting the 
proliferation of somatic cells, or by causing cell death [6]. Consistent with these 
predictions, the average length of the telomeres in human skin and blood cells  
in vivo decreases by 15-40 bp per year. In cell culture, the telomeres of 
fibroblasts, T cells, embryonic kidney cells, mammary epithelium, and cervical 
cells lose 50-200 bp from the TTAGGG repeats per population doubling [55-62]. 

2.3. Telomere Replication 

In certain types of cells, such as germ cells and stem cells, telomere length must 
be preserved to prevent exit from the cell cycle and entry into senescence. 
Therefore, these cells express an enzyme called telomerase, a large dimeric 
ribonucleoprotein complex [7, 63] comprising a reverse transcriptase protein 
(TERT) and an RNA template (TERC, also known as TR) [64-67]. Both 
components are essential for telomerase activity. Telomerase utilizes a region 
within its RNA component as a template for synthesizing telomeric repeats. In 
other words, telomerase functions as a reverse transcriptase that adds telomeric 
repeats to the ends of chromosomes. 
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2.4. Telomere Loss and Cellular Senescence 

2.4.1. Transformation 

Cultured human somatic cells undergo a finite number of divisions, the 
aforementioned Hayflick limit, before they senesce [55]. This limit is determined 
by telomere dynamics: the telomeres of somatic cells shorten at each division 
until they reach a length that prevents further cell division. Because the lengths of 
human telomeres are extremely heterogeneous, each cell may harbor one or more 
telomeric tracts that can no longer maintain telomere function. Induction of 
replicative senescence does not require that all telomeres within the cell be short; 
rather, senescence can be initiated by a small number of short telomeres [72, 73]. 
It is not clear, however, how short a telomere must become before it is recognized 
by the mechanisms that sense DNA damage. A telomere that still contains 
telomeric repeats, but is too short to form the protective T-loop structure, can 
trigger the initial damage signal. Although they arise infrequently, such uncapped 
chromosome ends may resemble a DNA strand break, and thus activate the p53 or 
retinoblastoma (Rb)-dependent cell cycle arrest pathways (Fig. 2B) [3]. The p53 
and pRb pathways are central to cellular senescence control. Telomere shortening, 
radiation, cytotoxic drugs and oncogene-induced DNA replication stress have all 
been shown to induce the DNA damage response, resulting in the activation of the 
checkpoint kinases ATM/ATR and CHK1/2. ATM can directly or indirectly 
phosphorylate p53 protein and leading to p53 accumulation. p53 can also be 
activated downstream of p14ARF, which binds to MDM2, preventing the 
degradation of p53. This stabilization and accumulation of p53 allows the 
activation of downstream genes such as p21, and the induction of cellular 
senescence. Another tumor suppressor p16INK4a, transcriptionally up-regulated 
in stressed cells, inhibits cyclin D-dependent kinases, thereby preventing the 
phosphorylation and inactivation of the retinoblastoma protein, pRb. This 
promotes the repressive association between pRb and transcriptional activators, 
preventing progression through the cell cycle [74-76]. But the mechanisms of this 
transcriptional regulation of p16INK4a and p14ARF in senescent human cells are 
not yet fully understood [77]. Alternatively, shortened telomeric tracts may lead to 
changes in the expression of subtelomeric senescence-related genes via the 
modulation of telomeric silencing [3, 78, 79]. This first mortality stage (Ml) can 
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be averted by mutations in the tumor suppressor genes p53 or Rb, suggesting that 
proteins encoded by these genes normally induce exit from the cell cycle at this 
point [80]. This notion was confirmed by Hara et al. [81], who showed that 
antisense p53 and Rb oligonucleotides act cooperatively to extend the replicative 
lifespans of human cells. Likewise, Ml can be bypassed by transfection of specific 
viral DNA sequences that are capable of overriding cellular growth control 
signals. For example, the expression of simian virus 40 (SV40) large tumor 
antigen allows fibroblasts and embryonic kidney cells to progress beyond Ml; 
human papillomavirus and adenovirus have much the same effect in other cell 
types [81-85]. In either case, the transformed cells continue to divide for as many 
as 50 divisions before they reach a second mortality stage (M2; also known as 
crisis), at which point the majority develop chromosomal abnormalities and die. 
M2 is not circumvented by viral transformation, and transformed cells do not 
survive M2. Progression beyond M2 is rare, apparently only occurring through 
mutational alterations in unidentified cellular gene(s). The M2 crisis probably 
represents the point at which nearly all chromosomes have lost most of their 
functional telomeres. Because the cis-acting elements that are required for the 
various functions of human telomeres remain unknown, it is difficult to gauge the 
point at which continued decline of telomere repeat will disable telomere 
function. 

2.4.2. Immortalization 

Cells can overcome the replication-induced M1 and M2 stages by activating a 
mechanism that elongates or stabilizes telomere lengths. Counter et al. [82] 
studied both telomere length and telomerase activity throughout the stages of 
immortalization in a primary cell line transformed with either SV40 or adenovirus 
DNA. They observed that telomere shortening continued through M2, often 
coinciding with the appearance of abnormal fused chromosomes; upon 
immortalization, however, even very short telomeres became stable. They then 
assayed telomerase activity in cell extracts, and found that telomere stabilization 
during immortalization coincided with the onset of telomerase activity [82]. These 
experiments solved the mystery surrounding the persistence of short telomeres in 
the presence of active telomerase, and confirmed that telomerase can be activated 
to stabilize the chromosome ends even after dramatic telomere loss. 
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2.5. Measurement of Telomere Length 

The first technique that was developed to measure telomere length in mammalian 
cells was based on Southern blotting. In this method, the restriction enzymes 
HinfI and RsaI are used to digest genomic DNA at points outside, but not within, 
the TTAGGG repeats at the ends of human chromosomes. The resulting 
fragments are separated by electrophoresis, transferred to nylon membranes, and 
then hybridized with a [32P]-labeled or biotin-conjugated (TTAGGG)7 probe that 
detects terminal restriction fragments (TRFs), including all terminal repeats and 
the subtelomeric region [86]. The TRFs appear as a smear on a gel because both 
the size of the subtelomeric region and the number of TTAGGG repeats varies 
depending on the chromosome. Moreover, the mean TRF length varies among 
cells within a population. One disadvantage of this method is that conventional 
Southern blot analysis requires a relatively large sample of DNA. 

Recent innovations in the technique involving fluorescence in situ hybridization 
(FISH) have enabled the study of telomere length in small numbers of cells. 
Quantitative fluorescence in situ hybridization (Q-FISH) can be used to 
characterize the dynamics of telomere length in dividing cells. In this method, 
telomere length is quantitated using Cy3-labelled peptide nucleic acid (PNA) 
probes that are specific for telomeric and centromeric sequences. Specifically, 
telomere length is determined by comparing the relative intensity of the 
fluorescent signals generated by the p- and q-telomeres of each individual 
chromosome with that of a reference centromeric signal on chromosome 2 [87, 
88]. Digital images are recorded with a CCD camera attached to a fluorescence 
microscope, and analyzed quantitatively using the appropriate software. Q-FISH 
has been adapted for the flow cytometric analysis of cells in suspension (flow 
FISH) [89]. In this method, FISH (utilizing labeled PNA probes specific for 
telomeric repeats) is used in combination with flow cytometric fluorescence 
measurements to measure the average lengths of telomere repeats in cells. Flow 
FISH analysis can be performed using commercially available flow cytometers 
and, in contrast to other methods used to measure telomere length, it can be used 
to obtain multi-parameter information on the lengths of telomere repeats in 
thousands of individual cells. Flow FISH was used to demonstrate that the 
telomere length in granulocytes correlates with the response to 
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method to study telomeric DNA in blast cells obtained from three patients with 
acute myeloid leukemia and in peripheral blood mononuclear cells (PBMCs) 
obtained when the same patients entered remission. As shown in Fig. 3, the 
telomeric DNA in the leukemic cells was actually shorter than that in 
mononuclear cells obtained from the same patients after they achieved complete 
remission. In the three patients examined, the average telomere lengths in 
leukemic cells were 3.2, 2.2, and 2.4 kb, whereas those measured in PBMCs 
during complete remission were 8.6, 7.6, and 4.1 kb, respectively (manuscript in 
preparation). This result is consistent with that of a previous report in which we 
used Southern blotting to make similar measurements [97], although the PCR-
based method achieved higher resolution. 

2.6. Telomere Length in Normal Controls 

The mean telomere length in PBMCs from 119 normal individuals (age, 0-107 
years) declined at a rate of 41±2.6 bp/year. This rate of TRF loss for PBMCs is 
close to that observed in peripheral blood leukocytes by both ourselves and Hastie 
et al. [56, 98, 99]. Separation of the data according to gender revealed that males 
lost telomeric DNA slightly faster than females (50 ± 4.2 bp/year vs. 40 ± 3.6 
bp/year, respectively). The 18 centenarians (age, 99-107 years) in this population 
had a mean TRF length of 5.28 ± 0.4 kb. The TRF length in these long-lived 
individuals could be predicted by extrapolating the line for individuals aged 0-80 
years, suggesting that the centenarians did not have a slower rate of telomere loss, 
but instead may have begun their lives with unusually long telomeres. The 
standard deviation of the mean TRF values for the centenarians (0.4 kb) was 
much smaller than that for other age groups (～1 kb), suggesting that the 
centenarians were less genetically diverse than the younger populations from the 
standpoint of telomere length [60]. 

2.7. Shortening of Telomeres in Recipients of Hematopoietic Stem Cell 
Transplantation 

Hematopoietic stem cell transplantation (HSCT) is used to treat various malignant 
and non-malignant diseases. Recovery of the hematopoietic system after HSCT 
requires hematopoietic stem cells (HSCs) to undergo numerous replication cycles. 
Although HSCs do possess telomerase activity, such enforced division may still 
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cause excessive shortening of the telomeres in the descendant cells. Our previous 
study analyzed telomere length in PBMCs isolated from 23 autologous HSCT 
patients (aged 4-61 years) and 46 allogeneic HSCT recipients (aged 6-52 years) to 
determine whether excessive shortening of telomeres is associated with HSCT [100]. 
After autologous HSCT, the mean telomere length in PBMCs was 9.7 kb (range 6.8 
to 12.0 kb). A comparison between pre- and post-transplant PBMCs revealed that 
post-transplant telomeres were up to 1.9 kb shorter (mean ± s.d.: 0.64 ± 0.5 kb). 
Furthermore, the slopes of the regression lines differed between autologous HSCT 
patients and normal volunteers. After allogeneic HSCT, the mean telomere length of 
PBMCs was 9.3 kb (range 6.8 to 12.0 kb), and the telomeres in recipient PBMCs 
were up to 2.1 kb (0.60 ± 0.468 kb) shorter than those in donor PBMCs. The 
regression lines for allogeneic HSCT patients and normal volunteers were parallel. 
All patients were transplanted with more than 2.0 × 108 cells/kg. Telomere length did 
not correlate with the number of transplanted cells. In addition, there was no 
significant correlation between telomere length and the recovery of complete blood 
counts. However, three patients who had relatively short telomeres after HSCT 
(average telomere length, 6.8 kb) needed more time than the other patients to recover 
to a normal hematological state. 

A recent report characterized the influence of mobilized and grafted cells on 
determining telomere length after HSCT [101]. Twenty patients received 
autografts collected after two sequential mobilization courses. Telomere length in 
the first collection was significantly longer than in the second. For autografts, the 
patients were divided into two groups: ten patients received HSCT from the first 
collection, and ten received HSCT from the second collection. Telomere length 
was also investigated before and after HSCT and in the grafts in ten cases of 
allogeneic HSCT. After transplantation, patients receiving autologous HSCT from 
the first collection had telomere lengths that were similar to those of the grafted 
cells (median: pre-HSCT, 7730 bp; post-HSCT, 7610 bp) and significantly longer 
than those of cells from the second collection. Likewise, patients who received 
autologous HSCT from the second collection had average telomere lengths of 
7360 bp pre-HSCT versus 7120 post-HSCT; significantly shorter than those of the 
first collection. Taken together, these data suggest that most HSCT patients 
possess telomeres within the biological “safety range”; however, long-term 
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hematopoiesis and occurrence of possible hematopoietic disorders should be 
carefully monitored in patients with telomeres shorter than 7.0 kb after HSCT 
[102]. 

2.8. Telomeric DNA in Leukemic Blood Cells 

Hematological malignancies are associated with progressive telomere shortening 
[12, 91, 103-105]. This shortening is thought to result from rapid clonal 
expansion, although oxidative damage or telomerase dysregulation may also 
contribute, at least in the early stages of some leukemias [106, 107]. The 
contribution of telomere shortening to the cytogenetic abnormalities commonly 
seen in leukemia is an active area of investigation, and many of these studies have 
been reviewed in detail by others [13, 108]. 

In a previous study, we measured the length of telomeric DNA in leukemic cells 
[97, 109]. Leukemic cells isolated from 12 patients with acute leukemia (seven 
with myeloid leukemia and five with lymphoid leukemia) exhibited shortening of 
telomeric DNA (range 2.7 to 6.4 kb). The average telomere lengths were 4.8 kb 
and 4.7 kb in patients with myeloid and lymphoid leukemia, respectively, whereas 
the telomere lengths in PBMCs obtained after the same patients had entered 
complete remission were 8.5 kb and 7.9 kb, respectively. When the same 
Southern blots were re-hybridized with Alu or alphoid sequences, which have 
important biological functions with regard to gene regulation and cell division, no 
significant changes in the size of the repetitive DNA sequences were observed, 
indicating that the DNA abnormalities in the leukemic cells were specific to 
telomeric regions. 

Telomere sequences do not encode proteins, but they play an important role in 
maintaining chromosomal stability and activity [24, 25]. Translocations arising 
through the tandem fusion of telomeres were first observed at the chromosomal 
level in leukemic B cells [110]. Subsequently, telomeric fusions were reported in 
a case of pre-T-cell acute lymphoblastic leukemia [111] and in some solid tumors 
[112]. These studies suggested that the ends of the chromosomes in some tumor 
cells contain abnormalities. We demonstrated that telomere attrition was even 
present in leukemic cells with normal karyotypes [97]. These observations suggest 
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that telomeres are unstable in leukemia patients, and that sequences are lost during 
the course of tumorigenesis. In one study, telomere shortening was significantly 
more pronounced in patients with cytogenetic alterations than in patients with 
normal karyotypes [113], and patients with complex cytogenetic abnormalities 
had the shortest median telomere length. Furthermore, TERT was most highly 
over-expressed in patients with complex karyotypes, followed by patients with 
noncomplex karyotypes and patients without karyotypic changes. These findings 
suggest that with increasing telomere attrition, whether due to replication-
dependent or -independent mechanisms, karyotypic abnormalities become more 
pronounced; consequently, telomerase upregulation becomes essential to prevent 
replicative senescence of the malignant clone. 

What is the mechanism underlying the reduction in telomere length observed in 
leukemic cells? This telomere shortening may reflect the number of cell divisions 
required to generate leukemic cells in the absence of telomerase. In somatic cells, 
telomere loss may be due to incomplete DNA replication in the absence of 
telomerase. The loss of DNA at each division acts as a mitotic clock, ultimately 
resulting in cell cycle exit or cell death [82, 114]. Telomerase may be reactivated 
in somatic cells that are immortalized during tumorigenesis [8]; in these cells,  
de novo synthesis of telomeric DNA by telomerase counterbalances losses due to 
replication. In one study of telomere length in immortal cells, 300 sequential 
samples were collected from 40 patients during the course of acute promyelocytic 
leukemia, and their telomerase activity and TRF length were assessed. About 90% 
of the patients exhibited a significant reduction in telomere length relative to that 
in the control, and telomerase was activated in all patients [115]. Consistent with 
this, as noted above, our group previously showed that the average telomere 
length in leukemic cells was shorter than that in PBMCs isolated from patients 
during complete remission. Therefore, it is conceivable that telomerase 
reactivation is a late event in cellular transformation, and that cells with short 
telomeres can remain viable provided that they are stably maintained by 
telomerase. 

Telomere loss may be a consequence of tumorigenesis, but it may also be a cause, 
i.e., telomere shortening may play an active role in the development of 
malignancy. Assuming that repetitive (TTAGGG)n sequences are essential for 
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telomere function [116], partial loss of these sequences should eventually 
destabilize the chromosome ends. Chromosomes lacking terminal repeats may 
become less stable and more prone to the fusion-bridge-breakage cycle [117], 
leading to the formation of daughter cells containing partly deleted or duplicated 
chromosomes. Such alterations may also play a part allele loss of restriction 
fragment length polymorphisms, consistent with the notion that mutations in 
tumor suppressor genes must be homozygous before malignancy can occur [118, 
119]. However, the specific effects of telomere reduction on tumorigenesis remain 
unclear, and will only be elucidated by future studies. 

3. TELOMERASE REGULATION 

Telomerase comprises an 1132 amino acid TERT component, a 445 nucleotide 
RNA component (TERC), and a number of associated proteins, such as dyskerin, 
p23, and heat shock protein 90 (HSP90), which are required for the stabilization 
and assembly of the enzyme. Telomeres form folded-cap structures comprised of 
T-loops and D-loops that are stabilized by telomere-binding proteins, including 
TRF1, TRF2, RAP1, TIN2, TPP1, and POT1 (known collectively as the shelterin 
complex). As described previously, these structures prevent recognition of 
chromosome ends as sites of DNA damage and restrict telomerase access, thereby 
ensuring telomere homeostasis (Fig. 4A). Although TRF1 bends, loops and pairs 
telomeric DNA and inhibits access of telomerase, telomere attrition leads to 
poly(ADP-ribosyl)ation of TRF1 by tankylase 1 (TANK1), resulting in release of 
TRF1 from the telomere ends and subsequent increased telomerase access (Fig. 
4B). The telomerase complex associates with the single-stranded 3’ overhang of 
the telomere end; five nucleotides of TERC, which contains the repeated sequence 
5’-CUAACCCUAAC-3’, bind to the 3’ telomeric DNA and serve as an RNA 
template for reverse transcription by TERT. After DNA synthesis, the telomerase 
complex translocates without dissociating from the telomere and another round of 
telomeric synthesis is initiated. Therefore, both TERT and TERC are essential for 
telomerase activity. Whereas TERC is expressed in a wide range of cell types, 
TERT expression and activity is tightly regulated during cell proliferation and 
differentiation. Telomerase activity is downregulated in quiescent or differentiated 
cells, and is reactivated in proliferating cells induced by growth factors and 
cytokines, indicating that the enzyme complex is regulated in a cell cycle-
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Telomerase activity is regulated at the levels of gene transcription and translation, 
as well as via post-translational modifications, translocation, and assembly of the 
protein. Transcriptional regulation is the major mechanism of regulation of TERT 
and has been explored extensively [126]. The gene encoding TERT is located on 
the short arm of chromosome 5 (5p13.33), more than 2 Mb away from the 
telomere [127, 128], suggesting that expression of the TERT gene is unlikely to be 
affected by the progressive telomere shortening that occurs during cell division 
[9]. The TERT gene consists of 16 exons and 15 introns, and is over 40 kb in 
length [9]. The TERT core promoter, which is located 330 bp upstream of the 
transcription start site, lacks TATA and CAAT boxes, but contains GC-rich 
regions and binding sequences for various transcriptional activators and repressors 
[9, 126]. The transcriptional activators that target the TERT promoter include c-
Myc, Sp1, Ets-1, nuclear factor of activated T-cells, nuclear factor kappa B  
(NF-κB), cAMP response element-binding protein, hypoxia inducible factor-1, 
and signal transducer and activator of transcription (STAT) proteins [20, 126]. On 
the other hand, the transcriptional repressors that negatively regulate telomerase 
expression include Wilms tumor 1 (WT1), myeloid zinc finger 2, p53, 
transcriptional activator 1, menin, Smad3, E2F1, PITX1, Mad1, and CCCTC-
binding factor (CTCF) [126, 129-131]. c-Myc, an oncogene product containing a 
basic-helix-loop-helix-zipper domain that forms a heterodimer with its activation 
partner Max, acts as a critical regulator of TERT transcription by binding to two 
canonical E-boxes (5’-CACGTG-3’) located 34 and 242 nucleotides upstream of 
the TERT transcription start site [11]. c-Myc also cooperates with the zinc finger 
transcription factor Sp1, which binds to GC-boxes located between the two E-
boxes in the TERT promoter; therefore, the transcriptional function of Sp1 is 
dependent on c-Myc [132]. The tumor suppressor protein p53 prevents binding of 
Sp1 to the TERT promoter, and WT1 interacts with both the c-Myc promoter and 
the TERT core promoter region, resulting in suppression of TERT transcription 
[9, 126, 133]. In addition, activation of E2F1 through a positive feedback loop of 
c-Myc represses transcription of TERT and thus negatively regulates c-Myc-
induced transcriptional activation of the gene [134]. 

Epigenetic modifications of DNA and histones also regulate TERT transcription. 

The TERT promoter contains a cluster of CpG sites, suggesting that it is 
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susceptible to regulation by changes in the DNA methylation status. Although 

methylation of CpG islands is generally considered to cause transcriptional 

silencing, there are some conflicting reports of the effects of methylation on 

TERT promoter activity. Global methylation of the CpG islands in the TERT 

promoter results in transcriptional repression [126]. By contrast, hypermethylation 

of a region upstream of the transcription start site of the TERT gene is crucial for 

its transcriptional activity in tumor cells, whereas hypomethylation at the core 

promoter region is required for transcription to proceed [129]. The transcription 

repressor CTCF is only able to bind to its recognition sequences in the first and 

second exons of TERT when these regions are demethylated; hence, 

hypermethylation prevents binding of CTCF and leads to transcriptional 

activation of TERT [135]. Histone modifications such as acetylation, methylation, 

phosphorylation, and ubiquitination are thought to alter chromatin remodeling and 

gene transcription [126, 129]. Histone deacetylase inhibitors activate the TERT 

promoter by recruiting Sp1 and mimic the induction of TERT mRNA expression 

upon T-cell antigen receptor stimulation by maintaining H3/H4 acetylation [136]. 

TERC expression is also regulated by histone deacetylation [137]. On the other 

hand, methylation of Lys4 of histone H3 (H3K4) is associated with increased 

TERT expression, while H3K9 methylation is associated with downregulation of 

TERT transcription [137]. Furthermore, phosphorylation of H3 by mitogen-

activated protein kinase (MAPK) induces TERT expression and activation in 

normal and neoplastic T-cells [138]. 

TERT mRNA expression is also regulated by a splicing mechanism. TERT 

mRNA transcripts contain at least six splice sites, and ten splice variants have 

been identified to date [139, 140]. Alpha site deletion variants (α-/β+), which 

contain a 183 bp deletion, lack a reverse transcriptase motif and exert a dominant 

negative effect on normal transcripts [140, 141]. 

It is estimated that more than 1000 microRNAs (miRNAs or miRs) regulate at 

least one-third of all protein-coding genes, and some miRNAs play a critical role 

in tumorigenesis [142]. A number of miRNAs are also involved in the control of 
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TERT gene expression and translation [143-147]. For example, exogenous 

expression of miR-150 in NK/T-cell lymphoma cells in which native miR-150 is 

suppressed reduces telomerase activity by downregulating Akt kinase expression 

[145]. Conversely, miR-21 upregulates STAT3-mediated activation of TERT 

expression in glioblastoma cells [147]. 

Telomeres are thought to be heterochromatic and were therefore assumed to be 

transcriptionally silent. However, it was discovered recently that telomeres are 

actually transcribed into telomeric repeat-containing RNA (TERRA) [148, 149]. 

Mammalian TERRA molecules are large non-coding RNAs containing UUAGGG 

repeats that vary in size from 100-9000 nucleotides. TERRA is complementary to 

and forms a duplex with the template sequence of TERC, leading to the 

suppression of telomerase activity. Therefore, TERRA is implicated in negative 

feedback regulation of telomeres [141]. 

As a post-translational level, ubiquitination of the TERT protein may affect 
telomerase activity [141]. The half-life of the TERT protein (approximately 24 h) 
is shorter than that of TERC (approximately 5 days), suggesting that TERT is a 
key determinant of telomerase stability. Some ubiquitin ligases, such as the 
MKRN E3 ubiquitin ligase and C-terminus of HSC70-interacting protein, regulate 
TERT stability. Both of these ligases interact with TERT and mediate its 
polyubiquitination, leading to degradation of the protein. The enzymatic activity 
of TERT is also controlled at the post-translational level via phosphorylation and 
effects on protein folding. Akt kinase and protein kinase C (PKC) phosphorylate 
and activate TERT [150, 151]. By contrast, protein phosphatase 2A (PP2A), a 
serine/threonine-specific phosphatase, inhibits telomerase activity. Protein 
tyrosine kinases, such as Src and Abl kinases, also contribute to TERT regulation. 
The roles of these kinases and phosphatase in TERT regulation are discussed in 
more detail in the next section. 

Telomerase biogenesis requires nuclear trafficking and assembly of TERT and 

TERC, each of which comprise multiple factors and form a complex (Table 2).  
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Table 2: Components involved in telomerase assembly and trafficking 

Components Roles 

TERC-Related   

NHP2/NPO10/dyskerin Members of the pre-formed core trimer snoRNP complex required for 
stabilization, intracellular trafficking and function of TERC. 

NAF1 Loads NHP2/NOP10/dyskerin core complex onto H/ACA domain of TERC via 
an interaction between NAF1 and the C-terminus of RNA polymerase II. 

GAR1 Member of the H/ACA snoRNP family that binds to the core snoRNP complex 
via dyskerin by substituting NAF1; it is also required for correct trafficking of 
TERC. 

TCAB1 RNA chaperon required for transporting TERC to the Cajal body and stabilizing 
dyskerin, resulting in an interaction between telomerase and telomere. 

Coilin Component of the Cajal body required for accumulation of telomerase to 
telomeres. 

SMN RNA assembly factor in the Cajal body that interacts with GAR1 and TERT and 
is required for proper assembly of the H/ACA snoRNP complex of TERC.  

hnRNP A1 Associated with both TERC and telomeric DNA and protects single stranded 
telomeric ends against degradation via double-stranded DNA breaks. 

Nopp140 Cajal body-related phosphoprotein that is associated with dyskerin and may 
play a role in trafficking of telomerase.  

TERT-Related  

HSP90/p23 Molecular chaperone that binds to TERT and is required for the nuclear 
localization and stabilization of telomerase. 

PinX1 Plays a role in trafficking of TERT to the telomere and inhibits telomerase via 
interacting with TRF1. 

Nucleolin Promotes translocation of TERT from the nucleolus to the nucleoplasm. 

Pontin/Reptin ATP-dependent helicase that is associated with TERT and dyskerin in cell 
cycle-dependent manner. 

TERT and TERC are found in nucleoplasmic foci (TERT foci) and Cajal bodies 
(CBs), respectively. CBs are spherical sub-nuclear organelles that reside at the 
nucleolar periphery during the G1 phase and are implicated in RNA-related 
processes, including the maturation of small nuclear and nucleolar 
ribonucleoprotein (RNP) particles. As the cell cycle progresses to the S phase, 
TERT and TERC colocalize at nucleoli, where both components associate with 
CBs and form a telomerase complex that translocates to telomeres (Fig. 5) [152]. 
Interaction of the HSP90-p23 complex with TERT is required for the nuclear 
localization of the protein and telomerase function [153]. Furthermore, 
transportation of TERT into the nucleus is also regulated by its phosphorylation. 



136   Frontiers in Clinical Drug Research - Anti-Cancer Agents, Vol. 1 Kawauchi et al. 

Liu et al. [122] showed that TERT is phosphorylated and translocated from the 
cytoplasm to the nucleus during T-cell activation. Our own and other groups have 
demonstrated that activated TERT forms a complex with Akt, HSP90, mTOR, 
S6K, and NF-κB, which promotes its nuclear translocation [123, 124, 154, 155]. 
In the nucleus, PinX1 mediates transient localization of TERT in the nucleolus 
and binding of nucleolin promotes subsequent shuttling from the nucleolus to the 
nucleoplasm [150-157]. Export of TERT from the nucleus into the cytoplasm is 
also regulated by several factors. For example, the 14-3-3 signaling protein binds 
to TERT and inhibits its nuclear export through CRM1 (also known as exportin 1) 
[158]. Mammalian TERC contains a 3’-terminal domain resembling H/ACA 
small nucleolar RNAs that is required for binding to TERT and subsequent 
telomerase accumulation and function [159]. H/ACA small nucleolar RNAs 
comprise conserved structural elements known as the H box and ACA box and 
direct pseudouridylation of pre-rRNA. The H/ACA-RNP complex subunits 
dyskerin, NOP10, and NHP2 form a core trimer that associates with nuclear 
assembly factor 1 (NAF1). This interaction with NAF1 facilitates loading onto 
TERC transcripts and leads to the stabilization of the TERC-small nucleolar RNP 
complex, which is necessary for TERC trafficking and telomerase function [156, 
160]. Substitution of GAR1 for NAF1 promotes the localization of TERC-
H/ACA-RNPs at the nucleolus, prior to translocation of the complexes to CBs. 
Subsequently, telomere CB protein 1 (TCAB1) mediates translocation of TERC-
H/ACA-RNPs to CBs, where CB-related proteins such as coilin, survival motor 
neuron (SMN), and probably Nopp140 (a 140 kDa nucleolar phosphoprotein) 
interact with TERC and may control telomerase trafficking and assembly [140, 
161-167]. In CBs, TERC-H/ACA-RNPs form a complex with TERT through its 
telomerase RNA-binding domain, which contains a T motif that regulates the rate 
of template copying during catalysis [156]. In addition, the ATPases pontin and 
reptin promote the interaction of TERT with TERC-dyskerin, after which they 
dissociate from the complex to yield catalytically active telomerase [140, 156]. 
The oligonucleotide/oligosaccharide binding fold-containing telomeric protein 
TPP1 mediates the cell cycle-dependent recruitment of telomerase to telomeres 
[168]. Similarly, the heterogeneous nuclear RNP A1 associates with TERC and 
telomeric DNA simultaneously; resulting in protection of the single-stranded 
telomeric ends against degradation via double-stranded DNA breaks [169]. 
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factor stimulation, GTP-bound Ras sequentially activates its downstream effectors 
Raf, MEK, and MAPKs, particularly extracellular-regulated kinases 1 and 2 
(ERK1/2). MAPK mediates epidermal growth factor-induced stimulation of Est-
dependent TERT transcription, leading to telomerase activation [171]. Similarly, 
vascular endothelial growth factor upregulates telomerase activity in ovarian 
cancer cell lines via ERK1/2 and Sp1-mediated transcriptional activation of TERT 
[172]. MAPK is involved in the estrogen receptor β-mediated anti-apoptotic role 
of TERT in pancreatic cancer cells [173]. MAPK may also regulate TERT in 
lymphocytes; in concanavalin A-stimulated T-cells, phosphorylation of histone 
H3 at Ser10 by ERK1/2, followed by acetylation of H3 at Lys14, induces TERT 
expression [138]. ERK1/2 also mediates the activation of TERT induced by latent 
membrane protein-1 (LMP-1) in Epstein-Barr virus (EBV)-infected B-cells [174]. 
Furthermore, MAPKs other than ERK1/2, such as c-Jun N-terminal kinase and 
p38 MAPK, are associated with TERT expression [175-177]. Finally, the MAPK 
signaling pathway appears to play a role in the regulation of TERC transcription 
[141]. 

The PI3K/Akt/mTOR kinase cascade is one of the major pathways that regulates 
cell proliferation, growth, survival, metabolism, and autophagy; this pathway 
plays a pivotal role in tumorigenesis and hematopoietic malignancies [178]. PI3K 
generates PI-3,4,5-triphosphate, which recruits 3-phosphoinositide-dependent 
kinase 1 and Akt kinase to the cytoplasmic membrane. Akt kinase is activated via 
phosphorylation at its Thr308 and Ser473 residues by 3-phosphoinositide-
dependent kinase 1 and mTORC2, respectively. Fully activated Akt kinase 
phosphorylates multiple downstream targets, including mTOR kinase, which then 
forms mTORC1 or mTOTC2 complexes. There is convincing evidence that the 
PI3K/Akt/mTOR pathway is involved in the regulation of TERT mRNA 
expression and post-transcriptional modification. The TERT protein contains two 
putative Akt kinase phosphorylation motifs (220-GARRRGGSAS-229 and 817-
AVRIRGKSYV-826); therefore, it is likely that TERT activity is regulated 
through Akt-dependent phosphorylation at these sites, particularly Ser227 and 
Ser824 [150]. Indeed, a TERT synthetic peptide containing the Ser824 residue can 
act as a substrate for activated Akt kinase [150]. E2 estradiol activates TERT 
mRNA expression and telomerase activity via the PI3K/Akt cascade in ovarian 
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cancer cells and neuronal PC12 cells expressing the estrogen receptor [179, 180]. 
E2-induced phosphorylation of TERT mediated by the PI3K/Akt/NF-κB cascade 
accelerates the nuclear translocation of TERT [179]. Consistent with this finding, 
TERT contains a bipartite nuclear localization signal at amino acids 222-224 
(222-RRR-224) and 236-240 (236-KRPRR-240), which is aligned in tandem 
[181]. Akt-mediated phosphorylation of TERT at Ser227 is required for nuclear 
translocation of TERT [181]. Akt-related proteins are also involved in TERT 
regulation. The tumor suppressor phosphatase and tensin homolog negatively 
regulates the PI3K/Akt pathway by dephosphorylating PI-3,4,5-triphosphate.  
DJ-1, a regulator that suppresses phosphatase and tensin homolog, activates 
TERT transcription in renal carcinoma cells by inducing the expression of 
phosphorylated Akt and c-Myc [182]. HSP90 is a chaperone protein that is 
necessary for TERT mRNA expression, nuclear translocation of TERT, and the 
formation of a functional telomerase complex [153, 183, 184]. Therefore, the 
physical interaction of Akt and HSP90 with TERT is essential for maintaining 
telomerase activity and thus protecting against cellular apoptosis [185]. Inhibition 
of mTOR, a major target of Akt kinase, downregulates TERT mRNA expression 
in endometrial cancer cells [186]. Furthermore, as mentioned above, our own and 
other groups have found that activated TERT forms functional complexes with 
Akt, HSP90, mTOR, and S6K, and that telomerase activity is inhibited by 
disruption of the complexes, suggesting a critical role of the 
PI3K/Akt/HSP90/mTOR pathway in the regulation of telomerase [123, 154]. 

The JAK-STAT signaling pathway has been implicated in the regulation of TERT 
in various tumors, including hematologic malignancies [20]. Cytokine and growth 
factor stimulations induce activation of JAK-STAT signaling in a variety of cells. 
Once activated by cytokines, JAK phosphorylates tyrosine residues of target 
receptors, itself, and members of the STAT family, including STAT1-4, STAT5A, 
STAT5B, and STAT6. Phosphorylated STAT proteins dimerize and translocate to 
the nucleus, where they function as transcriptional activators. STAT3 regulates 
the expression of TERT in a variety of human cancer and primary human cells. 
Chromatin immunoprecipitation assays of glioblastoma cells revealed that STAT3 
binds directly to consensus binding sites in the TERT promoter, and telomerase 
activity is abolished by treatment of these cells with STAT3 siRNA [187]. Our 
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group has demonstrated that STAT3 and STAT5 are released from the TERT 
promoter during leukemic cell differentiation [188]. Moreover, STAT5 binds to 
the TERT promoter and activates telomerase in response to IL-2 stimulation of 
adult T-cell leukemia (ATL) cells [124]. 

Other signaling molecules, such as PKC, NF-κB, PP2A, Abl, Src, TGF-β and 
Wnt/β-catenin, also affect telomerase activity. Phorbol myristate acetate, a PKC 
activator, increases telomerase activity in T-cells, and the effect is abolished by 
treatment with a PKC inhibitor [189]. PKCα phosphorylates TERT and enhances 
telomerase activity both in vitro and in tumor cells [151]. The PKCβ, δ, ε, and ζ 
isoforms also upregulate TERT activity via phosphorylation- or transcription-
dependent mechanisms [190, 191]. NF-κB is regulated by the suppressor IκB and 
the upstream activator IKK. PKCθ-activated NF-κB induces activation of TERT 
expression through a T-cell antigen receptor signaling pathway [192]. NF-κB also 
plays a critical role in the transcriptional regulation of TERT in human T-cells 
infected with lymphotropic virus type 1 (HTLV-1) and in the translocation of 
TERT from the cytoplasm to the nucleus in myeloma cells [155, 193]. In a study 
using breast cancer cell lines, PP2A abolished telomerase activity in nuclear 
extracts in a time- and concentration-dependent manner, and the inhibition of 
PP2A by okadaic acid reversed this effect [194]. A recent study demonstrated that 
the interaction of the catalytic subunit of PP2A and its scaffolding protein (PR65) 
with TERT is involved in the inhibitory effects of this kinase on telomerase 
activity [195]. The mechanism of telomerase inhibition by PP2A also appears to 
involve cytoplasmic accumulation of TERT and our group has demonstrated that 
DNA damage of retinoblastoma cells induced by doses of ionizing radiation 
above 10 Gy triggers PP2A activation, resulting in dephosphorylation of TERT 
and decreased telomerase activity [196]. In response to DNA damage, the SH3 
domain of c-Abl binds to a proline-rich sequence (308-PSTSRPPRP-316) in 
TERT and phosphorylates the protein, leading to a reduction in telomerase 
activity [197]. Moreover, Src kinase phosphorylates TERT and promotes its 
export from the nucleus, while Shp-2 inhibits this process [140]. Recently, TERT 
has been shown to localize to mitochondria, where it protects cells against 
oxidative stress by potentiating antioxidant defense systems [198]. In human 
endothelial cells, Src kinase is activated by H2O2 and phosphorylates Tyr707 of 
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the mitochondrial TERT protein, resulting in downregulation of TERT [199]. 
TGF-β, which inhibits cell proliferation and promotes cellular differentiation, 
accelerates the nuclear import of Smad3, which is recruited to the TERT promoter 
following c-Myc interaction, resulting in repression of TERT transcription [200]. 
Recently, the Wnt/β-catenin signaling cascade has also been shown to regulate 
telomerase in embryonic stem cells and tumor cells. Interaction of β-catenin with 
the transcription factor Klf4 promotes its localization to the TERT promoter; the 
subsequent recruitment of histone methyltransferase affects chromatin 
modifications and upregulates TERT transcription [201]. 

5. TELOMERASE DEREGULATION IN HEMATOLOGIC MALIGNANCIES 

5.1. Acute Leukemia and Myelodysplastic Syndrome 

Acute myeloid leukemia (AML) is a hematologic malignancy with heterogeneous 
biological features, including the occurrence of distinct cytogenetic backgrounds 
during leukemogenesis. The development of leukemia requires at least two 
molecular changes: i) genetic aberrations characterized by specific chromosomal 
translocations, and ii) alterations in the expression levels of growth-related genes, 
such as those caused by mutations in the FLT3 gene, which confer a growth 
advantage through the activation of various signaling pathways. Telomere and 
telomerase dysfunctions correlate with genomic instability and may be associated 
with hematological disease progression [19]. Telomeres are typically shorter in 
leukemic cells than normal cells [109]; in our study of 12 AML and ALL patients, 
the average telomere lengths in leukemic cells and normal peripheral blood 
mononuclear cells were 4.7-4.8 kb and 7.9-8.5 kb, respectively [97]. In another 
study, the age-adjusted telomere length in 137 untreated AML patients was 
significantly lower than that of matched controls, and patients with chromosomal 
aberrations had significantly shorter telomeres than patients with a normal 
karyotype [113]. The shortest telomeres were found in patients with complex 
aberrations, suggesting that telomere length is a prognostic marker of AML. 
When classified according to the French-American-British classification system, 
telomere lengths are reportedly shortest in the monocytic M5 subtype of AML. In 
addition, FLT3 mutations appear to correlate with shorter telomere lengths. On the 
other hand, elevated telomerase activity has been found in approximately 75% of 
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patients with acute leukemia [12, 97]. The high levels of telomerase activity in 
AML patients return to normal upon disease remission, and increased telomerase 
levels are associated with poor prognosis [202]. Compared with AML patients, 
telomerase activity is lower and telomere length is shorter in ALL patients [19, 
203]. However, in childhood, ALL patients have significantly higher levels of 
TERT mRNA expression than AML patients [204]. Furthermore, telomere 
shortening has been implicated in delayed hematopoietic reconstitution in 
leukemia patients undergoing allogeneic hematopoietic stem cell transplantation 
[100]. In any case, higher telomerase levels, shorter telomere lengths, and higher 
TERT levels are likely to be associated with poor prognosis [19, 204]. 

In myelodysplastic syndrome (MDS) patients, the level of telomerase activity is 
relatively low in bone marrow cells, but telomere lengths are shorter than those in 
normal control patients. Telomere shortening tends to be associated with specific 
chromosomal abnormalities and disease progression, indicating that short 
telomere lengths are a useful biomarker of MDS [12, 17, 205]. High risk MDS 
subtypes express high levels of the heterogeneous nuclear RNP B1, suggesting 
that this protein is related to leukemic transformation in these patients [206]. 

Recently, genetic mutations in telomerase components, including dyskerin, 
TERC, and TERT, have been reported to play a role in the pathogenesis of bone 
marrow failure syndromes and AML [207, 208]. A significant proportion of AML 
patients have mutations in the TERT gene, of which A1062T is the most common; 
these mutations can cause loss of telomerase activity and subsequent telomere 
shortening, and may predispose for hematologic malignancies, including AML 
[207]. 

A number of studies have examined the role of signaling pathways in the 
regulation of telomerase using AML cell lines or primary cells. DNA methylation 
inhibitors reduce TERT expression and telomerase activity, and the level of 
methylation in the TERT promoter differs in specific leukemia cell types. AML 
primary cells have significantly lower methylation levels at CpG islands in the 
TERT gene than control cells, suggesting that direct methylation of the TERT 
promoter is unlikely to occur in AML patients [209]. Akt kinase phosphorylates 
TERT and facilitates its translocation into the nucleus in AML cell lines [210]. 
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The HSP90 co-chaperone p23 is over-expressed in bone marrow leukemia cells 
from childhood ALL patients [211]. Because p23 and HSP90 are required for 
telomerase activity, these findings suggest that p23 affects telomerase function in 
ALL patients. Furthermore, erythropoietin (EPO) induces TERT gene 
transcription via the JAK2/STAT5/c-Myc pathway and TERT protein 
phosphorylation via the PI3K/Akt pathway in EPO-responsive erythroleukemia 
cells [212], and EPO-induced transcriptional activation of TERT is repressed 
when c-Myc is downregulated via the TGF-β/Smad3 pathway [213]. Our group 
has demonstrated that AML patients have high expression levels of STAT3 and 
STAT5 and elevated telomerase activity [214]. Phosphorylation of STAT5 is 
associated with the expression of P-glycoprotein and TERT, suggesting that 
STAT5 is a transcriptional activator of these genes. Finally, telomerase is down-
regulated during leukemic cell differentiation induced by agents such as vitamin 
D3, all-trans retinoic acid, and 12‐O‐tetradecanoylphorbol‐13‐acetate [188, 215]. 
Although PKC and Akt are both active in HL60 promyelocytic leukemia cells, 
transcriptional silencing of the TERT gene during cell differentiation renders these 
kinases incapable of activating telomerase in differentiated HL60 cells [215]. The 
mechanism of transcriptional silencing of TERT in differentiated cells involves 
the dissociation of STAT3 and STAT5, but not SP1, from the TERT promoter. 

5.2. Chronic Myeloid Leukemia 

Chronic myeloid leukemia (CML) is a clonal hematological stem cell disorder 

characterized by the presence of the BCR-ABL1 fusion gene. This fusion gene is 

generated by a reciprocal translocation [t(9;22)(q34;q11)] known as the 

Philadelphia chromosome, which produces the p190, p210, and p230 chimeric 

proteins [216]. CML is a good model for investigating the molecular mechanisms 

of leukemogenesis and drug resistance. Although telomere length and telomerase 

activity are altered in CML, the levels of these aberrations differ between the 

progressive chronic phase (CP), accelerated phase (AP), and blast phase (BP) of 

the disease. Telomeres in Philadelphia chromosome-positive cells are shorter than 

those in normal leukocytes, and age-adjusted telomere shortening correlates with 

the disease stage [91]. Telomeres in AP and BP patients are significantly shorter 

than those in CP patients, and telomere length correlates with the prognostic score 
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at diagnosis, suggesting a high turnover of leukemia cells [217]. Similarly, 

telomerase activity is higher in bone marrow leukemia cells from BP patients than 

those from CP patients, suggesting that it is a prognostic marker of shortened 

survival as well as rapid progression to the BP of the disease [12, 15, 19, 218]. 

The BCR-ABL1 chimeric proteins exhibit protein tyrosine kinase activities and 

play a central role in leukemogenesis by activating multiple downstream signaling 

pathways. Therefore, specific inhibitors of the BCR-ABL tyrosine kinases are 

ideal therapeutic agents for CML. Indeed, several protein tyrosine kinase 

inhibitors (TKIs), including imatinib, nilotinib, and dasatinib, have been shown to 

effectively eradicate leukemia cells and result in high molecular remission in 

CML CP patients [219]. TKIs such as imatinib inhibit TERT mRNA expression 

and thus telomerase activity in CML cell lines and primary cells [218, 220]. The 

inhibition of telomerase by imatinib is less effective in BP patients than CP 

patients, suggesting that increased telomerase activity is related to imatinib 

resistance [218]. Imatinib-induced telomerase inhibition is mediated in part 

through suppression of the PDK-1/Akt cascade [221]. Our group and others have 

found that STAT5 plays a crucial role in the regulation of TERT gene expression 

in CML cells [220, 222]; STAT5 activation induces upregulation of the TERT 

gene, as well as the gene encoding P-glycoprotein (MDR1), which is related to 

drug resistance, and knockdown of STAT5 recovers imatinib sensitivity [222]. 

These findings suggest that STAT5 confers imatinib resistance to leukemic cells 

via increased transcription of TERT and MDR1, and indicate that STAT5 is a 

promising therapeutic target for TKI-resistant CML patients. In addition, PKC 

and acetylation of multiple signaling molecules, such as histone H7, BCR-ABL, 

HSP90, p53, FAK kinase, and Rb protein, may play a role in the regulation of 

telomerase activity and the mechanism of imatinib resistance [223, 224]. 

5.3. Chronic Lymphocytic Leukemia 

B-cell chronic lymphocytic leukemia (B-CLL) is a mature B-cell neoplasm 
characterized by a heterogeneous clinical course; the disease is divided into two 
subgroups according to the presence of somatic mutations in the gene encoding 
the immunoglobulin heavy chain variable (IGHV) protein [225]. B-CLL cells 
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have shorter telomeres than normal B-cells, and telomere length correlates with 
the survival rates of these patients [19]. In addition, although low telomerase 
activity is observed at the early-stages of B-CLL, elevated telomerase activity is 
associated with the advanced stages and poor prognosis [15]. Indeed, telomere 
lengths are inversely correlated with the levels of telomerase activity, and short 
telomeres/high levels of telomerase activity are independently associated with the 
rapid progression of B-CLL [226]. Compared with mutated IGHV cases, higher 
telomerase levels and shorter telomeres are frequently found in non-mutated 
IGHV cases, consistent with the poor prognosis of the latter group. Furthermore, 
telomere shortening appears to correlate with expression of telomere shelterin 
complex genes (TRF1, TRF2 and POT1) and cytogenetic profiles [227]. A 
striking reduction in telomere length and shelterin gene expression occurs in B-
CLL patients who have cytogenetic profiles associated with poor prognosis, such 
as multiple chromosomal aberrations and p53 or ATM gene deletions. B-cell 
antigen receptor (BCR) signaling also plays a pivotal role in the proliferation and 
survival of B-CLL cells [228, 229]. BCR signaling increases telomerase activity 
and promotes cell survival and proliferation in non-mutated B-CLL patients [230]. 
BCR-induced activation of telomerase is blocked by LY294002, a PI3K/Akt 
inhibitor, suggesting the involvement of the PI3K/Akt pathway in this activation. 
In addition to B-CLL, patients with T-cell prolymphocytic leukemia, a rare 
aggressive leukemia derived from post-thymic mature T-lymphocytes, have 
shorter telomeres and elevated telomerase activity [231]. 

5.4. Malignant Lymphoma 

Malignant lymphomas include a variety of subtypes of B-cell and T/NK-cell 
neoplasms that originate from mature B-cells, T-cells, and NK-cells; these 
subtypes are grouped and defined according to the World Health Organization’s 
classification system [232]. Malignant lymphomas often retain the biological 
features of their normal counterparts; however, shortened telomeres and/or 
elevated telomerase levels are observed in most type of lymphomas [14, 18, 19, 
123, 233]. Furthermore, a recent study found that non-Hodgkin lymphoma 
patients have higher copy numbers of the TERC gene than patients in remission, 
suggesting the involvement of TERC amplification in lymphomagenesis [234]. 
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5.4.1. B-Cell Lymphomas 

Naïve B-cells, which have not encountered an antigen and reside in the 

interfollicular area in lymphoid tissues or migrate through the peripheral blood, 

and antigen-primed memory B-cells, which are long-lived and reside in the 

marginal zone of lymphoid tissues or recirculate through the peripheral blood, 

have barely detectable levels of telomerase activity [60, 235]. By contrast, 

antigen-activated germinal center (GC) B-cells have high levels of telomerase 

activity and longer telomere lengths than naïve B-cells [235, 236]. In addition, B-

cell receptor ligation and cytokine stimulation upregulate telomerase activity in 

naïve and memory B-cells [237]. With the exception of some low-grade 

malignancies such as marginal zone B-cell lymphoma, most B-cell lymphomas 

have high levels of telomerase activity that are similar to those of reactive lymph 

nodes [238, 239]. Telomerase activity tends to be higher in high-grade 

lymphomas, in particular Burkitt lymphoma (BL), than other lymphomas [12, 19, 

239]. The levels of telomerase activity in high-grade lymphomas are comparable 

to those in normal GC B-cells; therefore, the significance of high telomerase 

activity in B-cell lymphomas should be interpreted carefully. 

A number of studies have examined telomere lengths in B-cell lymphomas. In a 

study of 123 mature B-cell lymphoproliferative disorder samples, the median 

telomeric terminal restriction fragment length was approximately 6 kb; the 

fragment lengths were greater in diffuse large B-cell lymphoma (DLBCL), BL, 

and follicular lymphoma (FL) than mantle cell lymphoma (MCL) [240]. In a 

study of 223 B-cell lymphomas/leukemias, the telomeres were shorter in non-GC-

like DLBCL than FL, and were longest in GC-like DLBCL [241]. Notably, in a 

study of 44 patients with FL and nine patients with DLBCL secondary to FL, 

those with BCL2 gene rearrangements had significantly longer telomeres than 

those without [242]. These findings indicate that telomeres are longer in GC-

derived lymphomas than non-GC-derived lymphomas, although telomere 

shortening is observed in both of these B-cell lymphoma types. It should be noted 

that telomere length can vary substantially between patients with the same 

lymphoma type [243]. 
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Mechanisms by which TERT is activated in B-cell lymphomas have been reported 
by a number of groups. The TERT gene, which is located at chromosome 5p13.33, 
is deregulated by chromosomal translocations in several B-cell tumors [244, 245]. 
Rearrangement of the TERT-cleft lip and plate transmembrane 1-like locus at 
chromosome 5p1 is associated with MCL and splenic marginal zone lymphomas, 
and tumors with breaks in this region display elevated TERT mRNA expression 
and telomerase activity, suggesting that TERT is involved in B-cell 
lymphomagenesis [244]. The LMP-1 oncoprotein, which is encoded by the EBV 
gene, transactivates the TERT promoter via an NF-κB-c-Myc-dependent 
mechanism; this upregulation of telomerase may contribute to lymphomagenesis 
in EBV-related lymphomas [15, 18, 246]. PAX5, a B-cell-specific transcription 
factor, also binds to the TERT promoter region and induces transcription of the 
gene [247]. Finally, latency-associated nuclear antigen, which is encoded by 
human herpes virus-8, transactivates the TERT promoter via a direct interaction 
with SP1 and induces TERT expression in BL-derived and primary effusion 
lymphoma-derived cell lines [18]. 

5.4.2. T/NK-Cell Lymphomas 

Although elevated telomerase activity and expression levels of TERT mRNA are 
found in CD4+CD8+and CD4+CD8- thymocytes, peripheral T-cells have barely 
detectable levels of telomerase activity [248]. Telomeres are shorter in naïve T-
cells than memory T-cells, probably due to replication senescence [249]. 
However, TERT expression and telomerase activity can be upregulated by 
mitogens, cytokines, and stimulation of antigen receptors [121]. Indeed, anti-CD3 
and anti-CD28 antibodies, phytohaemagglutinin, concanavalin A, IL-2, IL-15, and 
IL-17 upregulate TERT expression and telomerase activity in human T-cells [121, 
250, 251]. 

Evidence of deregulation of telomeres and telomerase in T/NK-cell lymphomas is 
relatively limited. Anaplastic large cell lymphoma is associated with the presence 
of TERT mRNA variants; in a study of 38 anaplastic large cell lymphoma 
samples, TERT mRNAs were identified in over 90% of samples with ALK 
translocations but only approximately 60% of those without, suggesting an 
association of TERT expression with ALK translocation [252]. In another case, 
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high telomerase activity and telomere shortening were identified in skin-homing 
T-cells and peripheral blood lymphocytes from cutaneous T-cell lymphoma 
patients, even those with early stage disease [253]. 

ATL is an aggressive T-cell tumor caused by HTLV-1 that can be classified into 
four subtypes: smoldering, chronic, lymphoma, and acute [254, 255]. A study of 
22 ATL patients and 13 asymptomatic HTLV-1 carriers revealed that telomerase 
activity is much higher in acute ATL patients than chronic ATL patients or 
HTLV-1 carriers, and telomere length is significantly shorter in acute and chronic 
ATL patients than HTLV-1 carriers and healthy volunteers [256]. Importantly, 
high telomerase activity and shortened telomere length are associated with poor 
prognosis. Tax, a protein encoded by the HTLV-1 genome, plays a central role in 
transforming CD4+ T-lymphocytes [18] and IL-2 is required for the proliferation 
of HTLV-1-infected T-cells. There are conflicting reports of the effect of Tax on 
telomerase activity/expression. Gabet et al. [257] showed that Tax inhibits 
telomerase activity in transfected tumor cells by competing with c-Myc for 
binding to the E-box in the TERT promotor. Conversely, Sinha-Datta et al. [193] 
showed that Tax activates the TERT promoter through NF-κB-mediated 
activation of SP1 and c-Myc in IL-2-independent cells transformed by HTLV-1 
and primary T-cells transduced by HTLV-1. This discrepancy may be explained 
by the evidence that Tax activates the TERT promoter in quiescent but not 
proliferating T-cell lines, indicating its association with the cell cycle status [258]. 
In acute phase ATL, T-cells expressing Tax can be eliminated by host immune 
surveillance due to Tax immunogenicity. Indeed, most ATL cells do not express 
Tax, despite having high telomerase activity. The HTLV-1 bZIP (HBZ) protein, 
which is encoded by the minus chain of the HTLV-1 genome and is frequently 
expressed in ATL cells, forms heterodimers with the transcription factor JunD and 
activates TERT transcription by binding to GC-rich SP1-recognition sites in the 
proximal region of the TERT promoter [259]. HBZ also acts as a suppressor of 
menin, the product of the tumor suppressor MEN-1 gene that downregulates TERT 
gene transcription [260]. These actions of HBZ could be one explanation for Tax-
independent elevated telomerase activity in ATL cells. Other pathways may also 
play a central role in upregulating telomerase activity in Tax-negative HTLV-1-
infected cells or ATL cells [124, 261]. For example, in IL-2-dependent HTLV-1-
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immortalized cell lines, IL-2-stimulated activation of PI3K induces cytoplasmic 
retention of the WT1 protein, a strong repressor of the TERT promoter, leading to 
increased TERT expression [261]. Furthermore, our group has demonstrated that 
STAT5 binds directly to the TERT promoter, and siRNA-mediated knockdown of 
STAT5 inhibits TERT transcription in IL-2-responsive Tax-negative ATL cells 
[124]. The JAK/STAT and JAK/PI3K/Akt/HSP90/ mTORC1 pathways are both 
involved in IL-2-induced activation of telomerase in ATL cells, suggesting that 
these signaling proteins may be promising molecular therapeutic targets for IL-2-
dependent ATL. 

The role of the deregulation of telomerase in NK-cell tumors has not been 
elucidated fully; however, our previous study demonstrated that the 
PI3K/Akt/mTOR pathway plays a critical role in regulating telomerase activity in 
NK-cell lymphoma cells [123]. In this study, telomerase activity in a human NK-
cell line (NK-92), which requires IL-2 for proliferation, was increased after 
stimulation with IL-2, and the levels of TERT mRNA and protein correlated with 
telomerase activity. Inhibitors of PI3K prevented IL-2-induced telomerase 
activation and TERT expression. In addition, inhibition of HSP90 and/or 
mTORC1 prevented IL-2-induced telomerase activity and nuclear translocation of 
the TERT protein, but not TERT expression. Furthermore, TERT was shown to 
form a complex with Akt, HSP90, mTOR, and S6K in an IL-2-dependent manner. 
These findings indicate that IL-2 activates TERT at the transcriptional and post-
translational levels in NK-cell tumors via the PI3K/Akt/HSP90/mTORC1 
pathway. 

5.5. Multiple Myeloma 

Multiple myeloma (MM) is a clonal B-cell neoplasm characterized by the 
infiltration of atypical plasma cells into the bone marrow (BM) and associated 
with the presence of monoclonal protein in the serum or urine or both [262, 263]. 
MM constitutes approximately 10% to 15% of all hematologic malignancies and 
about 1% of all cancers [264]. Monoclonal gammopathy of undetermined 
significance (MGUS) progresses to MM at a rate of about 1% of cases per year, 
with an actuarial probability of malignant evolution of 30% at 25 years [264]. 
MM arises from a stepwise process of neoplastic progression with accumulation 
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of several genetic events that confer proliferative advantages and lead to the 
expansion of mutant plasma-cell clones [263]. Cells positive for CD138 isolated 
either at diagnosis or during relapse from 183 patients with MM had 
heterogeneous telomerase activity: compared with telomerase activity in the SK-
N-SH neuroblastoma cell line used as a positive control, telomerase activity in 
patients with MM was less than 5% of control in 36% of patients, 5% to 100% of 
control in 51% of patients, and greater than 100% of control in 13% of patients 
[265]. Xu et al. [266] have reported that telomerase activity was increased in 
samples from 21 of 27 patients with MM and from all 4 patients with plasma cell 
leukemias but was not increased in samples from any of the 5 patients with 
MGUS. These results suggest that telomerase activation plays a role in the 
malignant transformation of MGUS to MM [266]. 

Analysis of telomere length in CD138+ cells isolated from 115 patients with MM 
and 7 healthy donors showed a significant reduction in telomere length in MM 
[265]. The median telomere length was 5.3 kb (range, 3.0 to 15.0 kb). Telomeres 
were shorter than 4.0 kb in 25% of the patients. In contrast, healthy donors had 
long telomeres, ranging from 9.6 to 11.3 kb, with a median length of 10.6 kb. 
Telomere length is negatively correlated with telomerase activity in patients with 
MGUS or MM [264, 265]. Moreover, telomere length is negatively correlated 
with age and 2-microglobulin titers [265]. Although interleukin 6 (IL-6) plays an 
important role in the pathogenesis of MM, the serum level of IL-6 does not 
correlate with telomerase activity but does negatively correlate with telomere 
length. Patients with MM who had high telomerase activity and short telomeres 
have a poor prognosis [264, 265]. The patients with telomerase activity less than 
25% of that in neuroblastoma control cells and a telomere length greater than 5.5 
kb had a 1-year survival rate of 82%; in contrast, patients with higher telomerase 
activity and shorter telomeres had a significantly lower 1-year survival rate of 
63% (P=0.004). The 2-year survival rate was 81% in patients with telomerase 
activity less than 25% of that in control but was 52% in patients with telomerase 
activity higher than that in control. Shiratsuchi et al. [267] have also reported that 
telomerase activity was significantly increased in patients with MM who had a 
serum 2-microglobulin level greater than 6 mg/dL or had stage III disease 
(P=0.002). They also found that telomerase activity was significantly correlated 
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with Ki-67 positivity and the percentage of plasma cells in the BM [267]. 
Therefore, telomerase activity in MM might be a reliable marker of proliferative 
capacity and a useful prognostic factor. 

Changes have also been reported in telomere maintenance genes, including TRF1, 
TRF2, and TANK1, in patients with MGUS and MM [264]. TRF1 serves as a 
negative length regulator that limits telomere elongation and stabilizes telomere 
length. TRF2 is a negative regulator of telomere length as well but also 
participates in T-loop formation and in capping and protecting the 3’ single-strand 
overhang. Increased TRF2 expression induces telomere shortening, but its 
downregulation leads to telomere-telomere fusions, a finding that suggests that 
TRF2 plays a protective role in maintaining telomere structure and function. 
TANK1, on the other hand, is a positive regulator of telomere length, and its over-
expression progressively elongates telomeres in human cells. Patients with MGUS 
show increased expression of TRF1 and decreased expression of TRF2 and 
TANK1 compared with those in patients with MM [264]. In MM, the rate of BM 
infiltration and the Ki-67-positivity index are positively correlated with the 
expression of TRF2, TANK1, and human TERT and are negatively correlated 
with telomere length [264]. In patients with MM, TRF1 expression is increased 
and is associated with decreased telomere length, regardless of TERT expression, 
suggesting the possible participation of TFR1 in the maintenance of short 
telomeres [264]. Positive correlations between TRF2 and TANK1, TRF2 and 
TERT, and TANK1 and TERT have been found in both patients with MGUS and 
patients with MM [264]. 

Recent studies demonstrate that various growth factors, including IL-6, insulin-
like growth factor-1 (IGF-1), vascular endothelial growth factor, tumor necrosis 
factor transforming growth factor , and stromal cell-derived factor 1 play 
important roles in cell growth, survival, and migration in MM. Both IL-6 and 
IGF-1 are proliferative and survival factors for MM cells [268]. Both IL-6 and 
IGF-1 are produced at high concentrations in the BM microenvironment by 
osteoblasts, BM stromal cells, and bone endothelial cells. We have shown that IL-
6 and IGF-1 increase telomerase activity in the MM.1S and U266 MM cell lines 
without alteration of TERT proteins [268]. These cytokines increase telomerase 
activity via TERT transcriptional regulation through NF-B and via TERT 
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posttranscriptional regulation (phosphorylation) through the PI3K/Akt signaling 
pathway. Moreover, Hsp90 is a molecular chaperon, required to attain the specific 
conformation, stability, and proper functioning of telomerase [269]. The Hsp90 
inhibitor 17-(allylamino)-17-demethoxygeldanamycin (17-AAG; also known as 
tanespimycin) suppresses IGF-1-induced telomerase activity through the dual 
regulation of TERT [269]. The nuclear localization of TERT is required for 
telomerase to elongate telomeres. Several proteins that regulate the nuclear 
localization of TERT have been identified. Our previous study in an MM cell line 
has shown that tumor necrosis factor induces telomerase activity through TERT 
phosphorylation and that phosphorylated TERT bound to NF-B is translocated 
from the cytoplasm to the nucleus [155]. 

Corticosteroids and conventional chemotherapy with such regimens as high-dose 
dexamethasone; melphalan and prednisolone; and vincristine, doxorubicin, and 
pulsed high-dose dexamethasone provide the basis for the therapeutic 
management of MM. Dexamethasone reduces telomerase activity by inhibiting 
TERT messenger RNA expression before apoptosis is induced [268]. Although 
both apoptosis and dexamethasone-induced downregulation of telomerase activity 
are abrogated by IGF-1 and IL-6, the protective effects of these cytokines against 
dexamethasone-induced downregulation of telomerase activity are blocked by 
both wortmannin and the specific IB kinase inhibitor PS-1145 [264]. The 
proteasome inhibitor bortezomib is a 20S proteasome complex inhibitor that also 
inhibits NF-B, thereby interfering with NF-B-mediated cell survival, tumor 
growth, and angiogenesis [270]. Bortezomib is the first clinically used proteasome 
inhibitor and is effective against MM [270]. Bortezomib inhibits growth and 
decreases telomerase activity in ARP-1, CAG, U266, and RPMI8226 MM cell 
lines and in MM cells obtained from patients [270]. Telomerase inhibition is 
associated with downregulation of TERT transcription through decreased binding 
of SP-1 but not of Myc and NF-B in ARP-1 and CAG cells [270]. Moreover, 
phosphorylation of TERT protein is inhibited by bortezomib in ARP-1 cells, and 
this inhibition may be related to PKCα, but not to Akt [270]. 

We have reported the effect of GRN163L, a palmitoyl (C16) lipid-attached 
N3’→P5’ phosphoramidate oligonucleotide that targets the template RNA 
component (TERC) in MM cells [271, 272]. GRN163L inhibits telomerase 
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activity in MM.1S, U266, and RPMI8226 cell lines and in cells from patients with 
MM [271]. The exposure of MM cells to GRN163L effectively inhibits 
telomerase activity, reduces telomere length, and induces apoptotic cell death after 
2 to 4 weeks [271, 272]. However, GRN163L inhibits the growth of MM.1S cells 
with short telomeres (2.5 kb) but not that of U266 cells with long telomeres (9.0 
kb) [271]. Comprehensive and sequential gene-expression analysis has shown that 
progressive telomere shortening, leading to growth inhibition and cell death in 
MM.1S cells, is associated with upregulation of p21, MAD2, replication factor C, 
Cdc27, and cyclin E binding protein and with downregulation of Cdc27 [271]. 
Moreover, this telomere shortening is also associated with increased expression of 
phosphorylated p53 (Ser15) and p21 protein [271]. In 2 murine models of human 
MM, GRN163L significantly reduced tumor cell growth and increased survival 
compared with those in untreated control mice [272]. The Hsp90 inhibitor 17-
AAG enhances GRN163L-induced growth arrest in MM cell lines. Pretreatment 
with GRN163L for 1 week, before treatment with 17-AAG, led to complete 
growth arrest of MM cells within 4 days in, whereas cells not pretreated with 
GRN163L continued to grow [272]. These findings provide a rationale for 
combining GRN163L with other agents able to affect telomere shortening or 
genomic integrity to significantly enhance the killing of tumor cells. 

6. TELOMERASE INHIBITORS 

Telomerase-targeting therapy can have antitumor activity. A possible advantage of 

telomerase-targeting therapy is the safety margin based on the differences in 

telomerase activity and telomere length between tumor cells and normal cells, but a 

possible disadvantage is that the time lag between drug administration and clinical 

response can be long [273]. The clinical response to telomerase inhibition may be 

delayed owing to the time needed to achieve critical telomere shortening, which 

depends on telomere length and the potential kinetics of cell turnover [273]. 

Telomere DNA is shortened by approximately 100 bp with each cell division. The 

shortest telomeres in a cell will trigger a DNA damage checkpoint or genomic 

instability or both following telomerase inhibition [273]. The mechanism and 

clinical trials of telomerase inhibitors are demonstrated in Table 3. 
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Table 3: Telomerase inhibitors 

Compound Mechanism Clinical Trial 

G-Quadruplex-
Interacting 
Agent 
  TMPyP4  
  SYUIQ-5 
  RHPS4 
  BRACO-19 
  Telomestatin 

Stabilization of G-
quadruplexes. 

 

Catalytic 
Inhibitor 
 BIBR1532 

Inhibition of active site in 
enzyme. 

 

Reverse 
Transcriptase 
Inhibitor 
  Azidothymidine 

Block of dNTP 
incorporation into DNA. 

 

Antisense 
Oligonucleotide 
  Imetelstat 
(GRN163L) 

hTR antagonist. chronic lymphocytic leukemia (Phase I/II) multiple 
myeloma (Phase I) solid tumors or lymphoma (Phase I) 
breast cancer (Phase II) non-small-cell lung cancer (Phase 
II) essential thrombocythemia or polycythemia vera (Phase 
II). 

Immunotherapy 

  GRNVAC1 

  Telomelysin 
  (OBP-401) 

  Vx-001 

  GV1001 

  GX301 

 acute myeloid leukemia (Phase II). 

Immunological responses. 
Autologus dendritic cells 
transfected TERT or 
TERT-LAMP fusion 
mRNA. 

 

Telomerase-specific, 
replication-specific 
oncolytic adenovirus. 

solid tumors including carcinomas, melanomas, and 
osteosarcomas (Phase I). 

TERT cryptic peptide 
p572Y-580 and native 
TERT p572(R)-580. 

solid tumors including breast, colorectal, ovarian, head and 
neck, pancreas, melanoma, hepatocellular, renal, prostate 
cancers, and non-small-cell lung cancer (Phase I/II). 

TERT peptide p611-626. melanoma, non-small-cell lung cancer (Phase I/II) 
pancreatic cancer (Phase I/II/III). 

four TERT peptides and 
two adjuvants. 

Prostate cancer, renal cancer (Phase I/II). 

6.1. G-Quadruplex-Interacting Agents 

The 3' overhangs of human telomeres are rich in guanine (G) units and have been 
shown in vitro to form 4-stranded DNA structures termed G-quadruplexes. For 
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telomere sequences to be added by telomerase, the G-quadruplexes must be 
dissociated. Thus, drugs that stabilize G-quadruplexes might inhibit telomerase 
activity by preventing telomerase from using telomere sequences as a substrate. 
Although several classes of small molecule that interact with G-quadruplex DNA 
have been reported, in this review we focused on porphyrin derivatives 
(TMPyP4), cryptolepine derivatives (SYUIQ-5), pentacyclic acridine (RHPS4), 
trisubstituted acridine derivative (BRACO-19), and telomestatin. 

6.1.1 TMPyP4 

The cationic porphyrin TMPyP4, 5,10,15,20-tetra-(N-methyl-4-pyridyl) porphyrin 
(Fig. 7) can bind to and stabilize DNA G-quadruplexes. In vitro studies have 
shown G-quadruplex formation in the promoter or regulatory regions of important 
oncogenes, such as c-myc, c-myb, c-fos, and c-abl, and in the single-stranded G-
rich overhang of telomeres [274, 275]. These G-quadruplexes affect essential 
cellular processes. Thus, G-quadruplex structures are a potential therapeutic target 
in hematologic malignancies. We have previously reported that TMPyP4 
significantly inhibits the growth of K562 cells and TERT-transfected K562 cells 
[276]. Cell-cycle analysis showed decreases of cells in the G1 phase and increases 
of cells in the S and G2/M phases after 48 hours and cell death after 72 hours. 
Treatment with TMPyP4 decreases c-Myc protein expression, increases of p21CIP1 
and p57KIP2 protein expression, and activates p38 MAPK, c-Jun N-terminal 
kinase, and ERK. Shammas et al. [277] have also reported that TMPyP4 is active 
against the U266, ARH77, and ARD MM cell lines. Telomerase activity in U266, 
ARH77, and ARD cells was inhibited by less than 10 M of TMPyP4. Treatment 
with TMPyP4 had no effect on viability for the first 2 weeks but caused 75% to 
90% of cells to die over the following 2 weeks. 

6.1.2. SYUIQ-5 

The cryptolepine derivative SYUIQ-5 (N’-(10H-indolo (3,2-b) quinolin-11-yl)-N,N-
dimethyl-propane-1,3-diamine) induces apoptosis in HL-60 and K562 leukemic cells 
and inhibits the c-myc gene promoter and telomerase activity through G-quadruplex 
interaction [278, 279]. SYUIQ-5 was found to have dose-dependent antitumor 
activity in a short-term culture, in which rapid and potent DNA damage responses, 
such as H2AX phosphorylation, were triggered through the dissociation of TRF2 
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and telomere processing and induces telomere damage. The molecular response to 
telomere DNA damage induced by RHPS4 is the formation of several telomeric 
foci containing phosphorylated DNA damage-response factors, such as -H2AX, 
RAD17, and 53BP1. Ataxia telangiectasia mutated (ATM)- and Rad3-related 
ATM signaling is activated to repair RHPS4-induced telomere damage [282]. 
Overexpression of the telomere-binding protein TRF2 or POT1 antagonizes the 
antitumor activity of RHPS4 in vitro and in vivo [281]. Poly-adenosine 
diphosphate (ADP) ribose polymerase 1 (PARP1) is recruited and activated at 
telomeres upon G-quadruplexes and form several ADP-ribose polymers that are 
associated with TRF1 [283]. Both PARP inhibitors and PARP1-specific small 
interfering RNAs can prevent the repair of RHPS4-induced telomere DNA 
damage and lead to increases in chromosome abnormalities and, eventually, to the 
inhibition of tumor cell growth both in vitro and in vivo [283]. The addition of the 
topoisomerase I inhibitor SN-38, but not the topoisomerase II poison doxorubicin, 
to RHPS4 produces a synergistic antitumor effect [284]. Moreover, combination 
therapy with RHPS4 and camptothecins also produces a synergistic effect that 
inhibits tumor growth and increases the survival of mice [284]. 

6.1.4. BRACO-19 

The 3,6,9-trisubstituted acridine compound BRACO-19, 9-[4-(N,N-
dimethylamino)phenylamino]-3,6-bis(3-pyrrolodinopropionamido) acridine (Fig. 
7), has been developed as a ligand for stabilizing G-quadruplex structures [285]. 
Treatment with BRACO-19 inhibits cell growth with an increase of senescence-
associated marker -galactosidase in DU145 cells [286]. This growth inhibition is 
associated with upregulation of p21 and p16INK4a. Moreover, treatment with 
BRACO-19 for 1 or 3 weeks causes end-to-end chromosomal fusions, which are 
consistent with telomere uncapping. Burger et al. [287] have reported that 
BRACO-19 inhibits telomerase activity through downregulation of TERT 
expression after 24 hours, resulting in telomere shortening and complete cessation 
of growth after 15 days in the UXF1138L human uterus carcinoma cell line. In 
vivo treatment with BRACO-19 (intraperitoneal administration at 2 mg/kg/day) 
inhibited tumor growth by 96% compared with vehicle controls, and the response 
was paralleled by loss of nuclear TERT protein expression and an increase in 
atypical mitoses in nude mice with UXF1138L cell xenografts. Gunaratnam et al. 
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[288] have reported that BRACO-19 can produce short-term cytotoxicity and 
long-term growth inhibition in cancer cell lines, such as MCF7, A549, DU145, 
HT-29, HGC-27, and A2780, but is significantly less active against normal 
fibroblast cell lines, such as WI-38 and IMR90. BRACO-19 inhibits telomerase 
activity and reduces telomere length in MCF7 cells. Moreover, BRACO-19 binds 
to telomeric single-stranded overhang DNA, consistent with G-quadruplex 
formation, and displaces single-stranded protein human POT1 from the overhang. 

6.1.5. Telomestatin 

Telomestatin (Fig. 7) stabilizes G-quadruplex structures at the telomeric 3’ 
overhangs (G-tails) of chromosome ends and inhibits telomerase elongation by 
telomerase. Telomestatin has a 70-fold higher selectivity for intramolecular G-
quadruplex structures than for duplex DNA [289]. Telomestatin markedly reduces 
G-tails in cancer cell lines but not in normal fibroblasts and epithelial cells [289]. 
Telomestatin promptly induces cell death and is selectively effective against 
tumor cells [275]. In addition to inhibiting telomere elongation, telomestatin 
produces its anticancer effect by rapidly disrupting the capping function at the 
very ends of telomeres. In addition, treatment with telomestatin specifically 
dissociates TRF2 protein from telomeres [289]. Telomestatin that stabilizes G-
quadruplex structures may affect T-loop formation as well as TRF2 binding [289]. 
TRF1 protein complexes in telomeres contain TIN2, TPP1, and POT1, whereas 
the TRF2 protein interacts with TIN2, RAP1, the Rad50/MRE11/NBS complex, 
and the DNA-PK, Ku70/Ku80 complex. Caspase-3 and poly-(ADP-ribose) 
polymerase is activated by telomestatin in U937 cells [286]. Moreover, activation 
of p38 MAPK and MKK3/6 was found. In U937 xenograft mouse, intraperitoneal 
administration of telomestatin decreased tumor telomerase activity and reduced 
the volume of tumors, which exhibited marked apoptosis [290]. 

6.2. Catalytic Inhibitors 

6.2.1. BIBR1532 

BIBR1532 (2-[(E)-3-naphtalen-2-yl-but-2-enoylamino]-benzoic acid) (Fig. 7) is a 
small, highly selective telomerase inhibitor [291]. Short-term culture with 
BIBR1532 showed growth inhibition and cell death in the JVM13 leukemic cell 
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line and in primary cells from patients with AML or CLL [291]. The inhibitory 
effect was also noted in cells with long telomeres. The inhibitory effect was 
associated with decreased TRF2 and increased phosphorylated p53 (Ser15) but 
not with telomere shortening. 

6.3. Reverse Transcriptase Inhibitors 

6.3.1. Azidothymidine (AZT) 

Reverse transcriptase inhibitors (RTIs) are incorporated into DNA and block chain 
elongation by the reverse transcriptase enzyme. Azidothymidine (Fig. 7) can be 
incorporated into eukaryotic DNA in place of thymidine, although it has low affinity 
for DNA polymerases , ,  and high affinity for reverse transcriptase. Telomerase 
activity is reportedly inhibited by RTIs [292-294], because telomerase is a RNA-
dependent DNA polymerase with the enzymatic activity of reverse transcriptase. 
The nucleoside analog dideoxyguanosine inhibits telomerase activity and causes 
progressive telomere shortening in cultures of immortalized human lymphoid cell 
lines, the JY616 B cell line, and the Jurkat E6-1 T-cell line [292]. Azidothymidine 
can induce progressive telomere shortening, but other RTIs, including 
arabinofuranyl-guanosine, dideoxyinosine (ddI), dideoxyadenosine (ddA), 
didehydrothymidine (d4T), and phosphonoformic acid, do not cause telomere 
shortening or decreased cell growth. Datta et al. [293] have reported that 
azidothymidine inhibits telomerase activity in HTLV I-infected cells, resulting in 
telomere shortening with increased expression of p14ARF and p53. Moreover, 
azidothymidine reactivates p53-dependent transcription and induces the 
accumulation of the cyclin-dependent kinase inhibitors p21WAF and p27KIP [294]. 

6.4. Oligonucleotide Targeting TERC 

6.4.1. Imetelstat (GRN163L) 

Imetelstat (GRN163L), a palmitoyl (C16) lipid-attached N3’→P5’ 
phosphoramidate oligonucleotide, targets the template region of the human 
telomerase RNA (TERC) subunit. Imetelstat is now undergoing trials in patients 
with CLL, MM, solid tumors, or non-small-cell lung cancer (NSCLC). A phase 
I/II study to evaluate the safety and dose of imetelstat in patients with CLL is in 
progress. Moreover, phase I studies have been completed to evaluate the safety 
and dose of imetelstat administered weekly and of imetelstat and bortezomib 
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administered with or without dexamethasone, in patients with refractory or 
relapsed MM. In 8 of the 9 patients with MM treated with imetelstat, the number 
of circulating cancer stem cells decreased over 2 months [295]. A phase I study of 
imetelstat sodium in young patients with refractory or recurrent solid tumors or 
lymphoma is currently recruiting participants. Geron Corporation (Menlo Park, 
CA, USA) has announced that it was discontinuing a phase II study of imetelstat 
in 166 patients with breast cancer [295], because interim analysis of a randomized 
phase II study of imetelstat in combination with paclitaxel with or without 
bevacizumab in patients with metastatic human epidermal growth factor receptor 
2-negative breast cancer has demonstrated no significant improvement in median 
progression-free survival (PFS). A randomized phase II study of imetelstat as 
maintenance therapy following platinum-based induction chemotherapy for 
advanced NSCLC has been performed [296]; patients (n=116) were randomly 
assigned 2:1 to imetelstat (9.4 mg/kg on days 1 and 8 of a 21-day cycle) or to 
observation [296]. The median number of imetelstat maintenance cycles was 3. In 
the overall analysis of PFS, no significant improvement was observed in the 
imetelstat arm [296]: median PFS was 2.8 months for imetelstat and 2.6 months 
for observation, and the 6-month overall survival rate was 80% for imetelstat and 
72% for observation. Imetelstat was generally well tolerated, although rates of 
hematologic toxicity (predominantly neutropenia and thrombocytopenia) and 
nonhematologic toxicity (fatigue, nausea, vomiting) were increased in the 
imetelstat arm [296]. These data suggest that imetelstat has no clinically 
meaningful activity as a maintenance therapy in patients with NSCLC. A decrease 
in platelets has been noted as an adverse effect in earlier failed phase II trials of 
imetelstat in patients with breast and lung cancer [295, 296]. Although 
thrombocytopenia is an unwanted side effect when treating solid tumors, it is 
exactly the desired effect when treating some hematologic disorders, such as 
essential thrombocythemia and polycythemia vera [295]. A phase II study to 
evaluate the activity of imetelstat in patients with essential thrombocythemia or 
polycythemia vera is in progress. 

6.5. Immunotherapy 

Tumor-specific antigens have been identified for only a few cancers, most notably 
melanoma. Because most human tumor cells express telomerase, the polypeptide 
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component of telomerase is an attractive candidate for a broadly expressed, 
universal tumor-rejection antigen. Cancer immunotherapy is based on the 
protective role of the immune system against cancer, mainly via the ability of 
CD8+ cytotoxic T lymphocytes (CTLs) to recognize and kill cancer cells. When 
recognizing tumor antigenic peptides on the surface of tumor cells in association 
with major histocompatibility complex class I molecules, CTLs may become 
activated and able to lyse the cancer cells expressing these antigens [297]. A 
major problem of cancer immunotherapy is that almost all human tumor-
associated antigens are self-proteins, and, therefore, their specific T cells, mainly 
those with the highest affinity, are often tolerated [297]. Consequently, 
overcoming tumor-specific self-tolerance is a major goal in tumor immunotherapy 
[297]. 

6.5.1. GRNVAC1 

GRNVAC1 is autologous vaccine product that uses dendritic cells transfected 
with the messenger RNA encoding TERT and a portion of the lysosome-
associated membrane protein 1, matured, aliquoted, and cryopreserved [298]. A 
multicenter, open-label phase II study has been performed to evaluate the safety, 
feasibility, and efficacy of immunotherapy with GRNVAC1 in patients with AML 
in complete clinical remission [299]. GRNVAC1 was produced by means of 
patient-specific leukapheresis before or shortly after the completion of 
consolidation chemotherapy. Patients received injections of GRNVAC1 once 
weekly for 6 weeks, followed by 4 weeks of rest, and then received booster 
injections every other week for 12 weeks [299]. GRNVAC1 was administered to 
21 patients, 19 in complete remission (CR) (16 in CR1 and 3 in CR2) and 2 in 
early relapse. The 19 patients received a median of 17 injections (range, 6 to 32 
injections) of GRNVAC1. GRNVAC1 was well tolerated and produced no 
toxicities, except for thrombocytopenia, which developed in 1 patient after 6 
injections. With a median follow-up of 10.5 months (range, 1.2 to 27.2 months), 4 
of 19 patients relapsed and 7 patients continue to receive GRNVAC1. The 
disease-free survival (DFS) rate 12 months after the first GRNVAC1 injection 
was 79% for the 19 patients in CR. Moreover, the DFS rate was 75% for the 8 
patients in the intermediate-risk group and 81% for the 11 patients in the high-risk 
group. 
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6.5.2. Telomelysin (OBP-401) 

Telomelysin (OBP-401) is a telomerase-specific, replication-selective oncolytic 
adenovirus in which the TERT promoter element that drives expression of the 
E1A and E1B genes is linked with an internal ribosome entry site [300]. 
Treatment with telomelysin exerts a selective and efficient cytotoxic effect on 
various human cancers, including carcinomas, melanomas, and osteosarcomas, 
without damaging normal fibroblasts and mesenchymal cells [300]. In a phase I 
study [301] involving 16 patients, telomelysin was injected directly into advanced 
solid tumors and was well tolerated at all dose levels (1 x 1010, 1 x 1011, 1 x 1012 
viral particles). One patient with a malignant melanoma had a partial response 
(PR), and 7 patients had stable disease 56 days after treatment, according to 
Response Evaluation Criteria in Solid Tumors. 

6.5.3. Vx-001 

Vx-001, an HLA-A*0201-restricted TERT-specific antitumor vaccine, is 
composed of the 9-mer cryptic TERT572 peptide and its optimized variant 
TERT572Y [302, 303]. The TERT572Y (YLFFYRKSV) differs from the native 
TERT572 at position 1, where a tyrosine has been substituted for an arginine [302, 
303]. This substitution enhances the vaccine’s affinity for HLA-A*0201, the most 
frequently expressed HLA allele, and increases its immunogenicity [302, 303]. In 
a phase I study of Vx-001 [303], 14 of 19 patients with advanced cancers 
completed the vaccination program, which involved 2 subcutaneous injections 
with escalated doses (2-6 mg) of the optimized TERT572Y peptide followed by 4 
subcutaneous injections of the native TERT572 peptide every 3 weeks. Peripheral 
blood TERT572Y-specific CD8+ lymphocytes were detected in 13 of 14 evaluable 
patients after 2 injections of the optimized TERT572Y peptide. No patients had CR 
or PR, but 4 patients showed stable disease for a median of 10.5 months. The 
vaccine produced no grade III or IV toxicity. Moreover, a phase II study was 
performed with a fixed peptide dose (2 mg) to evaluate the long-term safety and 
immunogenicity of Vx-001 in patients with various advanced solid tumors, 
including breast, colorectal, ovarian, head and neck, pancreas, melanoma, 
hepatocellular, renal, and prostate cancers [304]. Fifty-five patients expressing 
HLA-A*0201 were enrolled, and 34 patients (62%) completed the vaccination 
program consisting of 2 subcutaneous injections of the optimized TERT572Y 
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peptide followed by 4 injections of the native TERT572 peptide every 3 weeks. 
The second and sixth vaccinations induced a TERT-specific T-cell immune 
response in 55% and 70% of the patients. Disease control was achieved in 36% of 
cases and included 1 CR and 1 PR. The Vx-001 vaccine was well tolerated, and 
immunologically responsive patients had significantly better PFS and overall 
survival (5.2 months and 20 months) than did nonresponders (2.2 months, 
P=0.0001, and 10 months, P=0.041). 

Subgroup analysis of 22 patients with advanced NSCLC showed that the vaccine-
induced specific early immune response correlated with prolonged survival [305]. 
Twelve (54.5%) of the 22 patients completed the vaccine program. The patients 
with early immunological responses had a significantly better overall survival 
than did patients without immunological responses. The median overall survival 
was 30.0 months for responders and 4.1 months for nonresponders. A multicenter 
randomized phase IIb trial was designed to evaluate whether Vx-001 can prevent 
or delay tumor progression in patients with stage IV or recurrent stage I to III 
NSCLC whose disease had not progressed after 4 cycles of first-line platinum-
based chemotherapy [306]. 

6.5.4. GV1001 

GV1001, a peptide consisting of a 16-aa TERT sequence, contains binding motifs 
that allow highly promiscuous binding to a broad array of class II molecules and 
thus avoids the need for HLA testing [307]. Six patients with cutaneous T-cell 
lymphoma received vaccinations with GV1001 and granulocyte/macrophage 
colony-stimulating factor as an adjuvant [307]. None of the patients showed an 
objective clinical response to the vaccination, whereas 1 patient showed 
progressive disease. One of 6 patients showed a GV1001-specific T-cell response 
with a Th1 cytokine profile and expression of skin-homing receptors. This TERT-
specific T-cell response was not associated with beneficial modulation of the 
tumor-infiltrating leukocytes [307]. Removal of regulatory T cells did not enhance 
responsiveness to GV1001 in vitro in any of the patients analyzed. These results 
suggest that the GV1001 vaccination is not effective in patients with cutaneous T-
cell lymphoma. The TeloVac phase III trial tested the GV1001 vaccine in 1062 
patients with advanced and metastatic pancreatic cancer who were recruited in 52 
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centers across the United Kingdom. There was no significant difference in overall 
survival between patients given the GV1001 vaccine and control patients given 
chemotherapy [308]. 

6.5.5. GX301 

GX301 is a vaccine comprising 4 TERT peptides (peptide540-548, peptide611-626, 

peptide672-686, and peptide766-780) and 2 adjuvants (Montanide ISA-51 [Seppic, 

Puteaux, France] and imiquimod) [309]. The peptides are promiscuous and able to 

bind to HLA class I and II molecules. The adjuvants can induce efficient innate 

immune responses and strongly activate antigen-presenting cells. Moreover, 

Montanide ISA-51 produces a water-in-oil emulsion with the peptide solution that 

protects against protease clearance and favors uptake by phagocytes. In the 

clinical study, GX301 was administered by intradermally injecting 500 g of each 

peptide dissolved in Montanide ISA-51 in the skin of the abdomen. Imiquimod 

was applied as a cream at the injection sites. An open-label, phase I/II clinical trial 

was performed to evaluate the safety, tolerability, and clinical response of 

immunotherapy with GX301 in patients with stage IV prostate or renal cancer. 

The schedule of vaccination included 8 administrations on days 1, 3, 5, 7, 14, 21, 

35, and 63. Evidence of vaccine-specific immunological responses was detected 

in all 14 patients. Disease stabilization occurred in 4 patients. Prolonged PFS and 

overall survival were observed in 8 of 14 patients, who showed a full pattern of 

vaccine-specific immunological responses. No grade 3 or 4 adverse reaction was 

noted. Phase II/III trials in patients with early and late stage prostate or renal 

cancer are being planned. 

7. CONCLUDING REMARKS 

Telomeres and telomerase are major players in the control of senescence and 
carcinogenesis. Telomerase is regulated tightly during cell proliferation in a cell 
cycle-dependent manner. Because hematopoietic stem and progenitor cells 
continuously generate and provide mature blood cells to the periphery, telomerase 
is activated more frequently in these cells than other somatic cells. Subsequently, 
telomeres in hematopoietic cells are more susceptible to stress/ageing-induced 
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shortening, leading to a loss of telomeric function that may promote chromosomal 
instability and oncogenic changes. Several methods to measure telomere length, 
including terminal restriction fragment analysis, quantitative- and flow-
fluorescence in situ hybridization, and single telomere length analysis, have been 
developed. Because telomeres comprise multiple repeated sequences, direct 
amplification of telomeric DNA by PCR is difficult. However, significant 
advances in quantitative real-time PCR assays and the use of new primers have 
enabled more accurate measurements of absolute telomere lengths. Most 
hematologic malignancies have high levels of telomerase activity and short 
telomeres, which are associated with chemotherapeutic resistance and poor 
prognosis. Furthermore, chromosomal aberrations involving telomerase genes 
may be involved in the tumorigenesis of hematologic malignancies. A number of 
promising therapeutic agents targeting telomerase have been developed. Current 
therapeutic strategies include the use of G-quadruplex-interacting molecules, 
TERT catalytic inhibitors, TERT reverse transcriptase inhibitors, TERT-targeting 
oligonucleotides, and immunotherapy. 

Exogenous expression of specific transcription factors, including Oct4, c-Myc, 
Klf4, and Sox2, reprograms differentiated somatic cells such as fibroblasts into 
induced pluripotent stem (iPS) cells [310]. Because iPS cells resemble embryonic 
stem cells, they are capable of being rejuvenated. Intriguingly, telomere 
elongation accompanied by the upregulation of telomerase is comparable in iPS 
cells derived from young and old individuals. In addition, exogenous expression 
of the TERT gene and reprograming-associated transcription factors enhances the 
efficiency of iPS cell reprograming [311]. Therefore, telomerase may play an 
important role in iPS cell biology, suggesting that it could be an attractive target 
for regenerative biology as well as tumor therapy. 
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